阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Hadoop 2.6.0 HA高可用集群配置详解(二)

284次阅读
没有评论

共计 10029 个字符,预计需要花费 26 分钟才能阅读完成。

Zookeeper 集群安装

Zookeeper 是一个开源分布式协调服务,其独特的 Leader-Follower 集群结构,很好的解决了分布式单点问题。目前主要用于诸如:统一命名服务、配置管理、锁服务、集群管理等场景。大数据应用中主要使用 Zookeeper 的集群管理功能。

本集群使用 zookeeper-3.4.5-cdh5.7.1 版本。首先在 Hadoop-slave1 节点安装 Zookeeper,方法如下:

// 新建目录

$ mkdir app/cdh

// 解压 zookeeper 安装包

$ tar -xvf zookeeper-3.4.5-cdh5.7.1.tar.gz -C app/cdh/

// 删除安装包

$ rm -rf zookeeper-3.4.5-cdh5.7.1.tar.gz

// 配置用户环境变量

$ vim .bash_profile

export ZOOKEEPER_HOME=/home/hadoop/app/cdh/zookeeper-3.4.5-cdh5.7.1

export PATH=$PATH:$ZOOKEEPER_HOME/bin

// 使修改的环境变量生效

$ source.bash_profile

// 修改 zookeeper 的配置文件

$ cd app/cdh/zookeeper-3.4.5-cdh5.7.1/conf/

$ cp zoo_sample.cfg zoo.cfg

$ vim zoo.cfg

# 客户端心跳时间 (毫秒)

tickTime=2000

# 允许心跳间隔的最大时间

initLimit=10

# 同步时限

syncLimit=5

# 数据存储目录

dataDir=/home/hadoop/app/cdh/zookeeper-3.4.5-cdh5.7.1/data

# 数据日志存储目录

dataLogDir=/home/hadoop/app/cdh/zookeeper-3.4.5-cdh5.7.1/data/log

# 端口号

clientPort=2181

# 集群节点和服务端口配置

server.1=hadoop-slave1:2888:3888

server.2=hadoop-slave2:2888:3888

server.3=hadoop-slave3:2888:3888

# 以下为优化配置

# 服务器最大连接数,默认为 10,改为 0 表示无限制

maxClientCnxns=0

# 快照数

autopurge.snapRetainCount=3

# 快照清理时间,默认为 0

autopurge.purgeInterval=1

// 创建 zookeeper 的数据存储目录和日志存储目录

$ cd ..

$ mkdir -p data/log

// 在 data 目录中创建一个文件 myid,输入内容为 1

$ echo "1" >> data/myid

// 修改 zookeeper 的日志输出路径 (注意 CDH 版与原生版配置文件不同)

$ vim libexec/zkEnv.sh

if ["x${ZOO_LOG_DIR}" = "x" ]

then

   ZOO_LOG_DIR="$ZOOKEEPER_HOME/logs"

fi

if ["x${ZOO_LOG4J_PROP}" = "x" ]

then

   ZOO_LOG4J_PROP="INFO,ROLLINGFILE"

fi

// 修改 zookeeper 的日志配置文件

$ vim conf/log4j.properties

zookeeper.root.logger=INFO,ROLLINGFILE

// 创建日志目录

$ mkdir logs

将 hadoop-slave1 节点上的 Zookeeper 目录同步到 hadoop-slave2 和 hadoop-slave3 节点,并修改 Zookeeper 的数据文件。此外,不要忘记设置用户环境变量。// 在 hadoop-slave1 中将 zookeeper 目录复制到其它节点

$ cd ~

$ scp -r app/cdh/zookeeper-3.4.5-cdh5.7.1hadoop-slave2:/home/hadoop/app/cdh

$ scp -r app/cdh/zookeeper-3.4.5-cdh5.7.1 hadoop-slave3:/home/hadoop/app/cdh

// 在 hadoop-slave2 中修改 data 目录中的 myid 文件

$ echo "2" >app/cdh/zookeeper-3.4.5-cdh5.7.1/data/myid

// 在 hadoop-slave3 中修改 data 目录中的 myid 文件

$ echo "3" >app/cdh/zookeeper-3.4.5-cdh5.7.1/data/myid

最后,在安装了 Zookeeper 的各节点上启动 Zookeeper,并查看节点状态,方法如下:// 启动

$ zkServer.sh start

// 查看状态

$ zkServer.sh status

// 关闭

$ zkServer.sh stop
Hadoop HA 配置
// 在 hadoop-master1 节点解压 hadoop 安装包
$ tar-xvf hadoop-2.6.0-cdh5.7.1.tar.gz -C /home/hadoop/app/cdh/

// 删除安装包
$ rmhadoop-2.6.0-cdh5.7.1.tar.gz

// 修改 hadoop-env.sh 文件
$ cd/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/etc/hadoop

$ vimhadoop-env.sh
exportJAVA_HOME=/home/hadoop/app/jdk1.7.0_79
// 配置 core-site.xml 文件
$ vim core-site.xml

<configuration>
  <!-- 指定 hdfs 的 nameservices 名称为 mycluster,与 hdfs-site.xml 的 HA 配置相同 -->
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://mycluster</value>
  </property>
	
  <!-- 指定缓存文件存储的路径 -->
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/data/tmp</value>
  </property>

  <!-- 配置 hdfs 文件被永久删除前保留的时间(单位:分钟),默认值为 0 表明垃圾回收站功能关闭 -->
  <property>
    <name>fs.trash.interval</name>
    <value>1440</value>
  </property>
  
  <!-- 指定 zookeeper 地址,配置 HA 时需要 -->
  <property>
    <name>ha.zookeeper.quorum</name>
    <value>hadoop-slave1:2181,hadoop-slave2:2181,hadoop-slave3:2181</value>
  </property>
</configuration>
// 配置 hdfs-site.xml 文件
$ vim hdfs-site.xml

<configuration>
  <!-- 指定 hdfs 元数据存储的路径 -->
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/data/namenode</value>
  </property>

  <!-- 指定 hdfs 数据存储的路径 -->
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/data/datanode</value>
  </property>
  
  <!-- 数据备份的个数 -->
  <property>
    <name>dfs.replication</name>
    <value>3</value>
  </property>

  <!-- 关闭权限验证 -->
  <property>
    <name>dfs.permissions.enabled</name>
    <value>false</value>
  </property>
  
  <!-- 开启 WebHDFS 功能(基于 REST 的接口服务)-->
  <property>
    <name>dfs.webhdfs.enabled</name>
    <value>true</value>
  </property>
  
  <!-- ////////////// 以下为 HDFS HA 的配置 ////////////// -->
  <!-- 指定 hdfs 的 nameservices 名称为 mycluster -->
  <property>
    <name>dfs.nameservices</name>
    <value>mycluster</value>
  </property>

  <!-- 指定 mycluster 的两个 namenode 的名称分别为 nn1,nn2 -->
  <property>
    <name>dfs.ha.namenodes.mycluster</name>
    <value>nn1,nn2</value>
  </property>

  <!-- 配置 nn1,nn2 的 rpc 通信端口 -->
  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn1</name>
    <value>hadoop-master1:8020</value>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn2</name>
    <value>hadoop-master2:8020</value>
  </property>

  <!-- 配置 nn1,nn2 的 http 通信端口 -->
  <property>
    <name>dfs.namenode.http-address.mycluster.nn1</name>
    <value>hadoop-master1:50070</value>
  </property>
  <property>
    <name>dfs.namenode.http-address.mycluster.nn2</name>
    <value>hadoop-master2:50070</value>
  </property>

  <!-- 指定 namenode 元数据存储在 journalnode 中的路径 -->
  <property>
    <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://hadoop-slave1:8485;hadoop-slave2:8485;hadoop-slave3:8485/mycluster</value>
  </property>
  
  <!-- 指定 journalnode 日志文件存储的路径 -->
  <property>
    <name>dfs.journalnode.edits.dir</name>
    <value>/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/data/journal</value>
  </property>

  <!-- 指定 HDFS 客户端连接 active namenode 的 java 类 -->
  <property>
    <name>dfs.client.failover.proxy.provider.mycluster</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
  </property>

  <!-- 配置隔离机制为 ssh -->
  <property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence</value>
  </property>

  <!-- 指定秘钥的位置 -->
  <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/home/hadoop/.ssh/id_rsa</value>
  </property>
  
  <!-- 开启自动故障转移 -->
  <property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
  </property>
</configuration>
// 配置 mapred-site.xml 文件
$ vim mapred-site.xml

<configuration>
  <!-- 指定 MapReduce 计算框架使用 YARN -->
  <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>

  <!-- 指定 jobhistory server 的 rpc 地址 -->
  <property>
    <name>mapreduce.jobhistory.address</name>
    <value>hadoop-master1:10020</value>
  </property>

  <!-- 指定 jobhistory server 的 http 地址 -->
  <property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>hadoop-master1:19888</value>
  </property>

  <!-- 开启 uber 模式(针对小作业的优化)-->
  <property>
    <name>mapreduce.job.ubertask.enable</name>
    <value>true</value>
  </property>

  <!-- 配置启动 uber 模式的最大 map 数 -->
  <property>
    <name>mapreduce.job.ubertask.maxmaps</name>
    <value>9</value>
  </property>

  <!-- 配置启动 uber 模式的最大 reduce 数 -->
  <property>
    <name>mapreduce.job.ubertask.maxreduces</name>
    <value>1</value>
  </property>
</configuration>
// 配置 yarn-site.xml 文件
$ vim yarn-site.xml

<configuration>
  <!-- NodeManager 上运行的附属服务,需配置成 mapreduce_shuffle 才可运行 MapReduce 程序 -->
  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>

  <!-- 配置 Web Application Proxy 安全代理(防止 yarn 被攻击)-->
  <property>
    <name>yarn.web-proxy.address</name>
    <value>hadoop-master2:8888</value>
  </property>
  
  <!-- 开启日志 -->
  <property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
  </property>

  <!-- 配置日志删除时间为 7 天,- 1 为禁用,单位为秒 -->
  <property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>604800</value>
  </property>

  <!-- 修改日志目录 -->
  <property>
    <name>yarn.nodemanager.remote-app-log-dir</name>
    <value>/logs</value>
  </property>

  <!-- 配置 nodemanager 可用的资源内存 -->
  <property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>2048</value>
  </property>

  <!-- 配置 nodemanager 可用的资源 CPU -->
  <property>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>2</value>
  </property>
  
  <!-- ////////////// 以下为 YARN HA 的配置 ////////////// -->
  <!-- 开启 YARN HA -->
  <property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
  </property>

  <!-- 启用自动故障转移 -->
  <property>
    <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    <value>true</value>
  </property>

  <!-- 指定 YARN HA 的名称 -->
  <property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>yarncluster</value>
  </property>

  <!-- 指定两个 resourcemanager 的名称 -->
  <property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
  </property>

  <!-- 配置 rm1,rm2 的主机 -->
  <property>
    <name>yarn.resourcemanager.hostname.rm1</name>
    <value>hadoop-master1</value>
  </property>
  <property>
    <name>yarn.resourcemanager.hostname.rm2</name>
    <value>hadoop-master2</value>
  </property>

  <!-- 配置 YARN 的 http 端口 -->
  <property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>hadoop-master1:8088</value>
  </property>	
  <property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>hadoop-master2:8088</value>
  </property>

  <!-- 配置 zookeeper 的地址 -->
  <property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>hadoop-slave1:2181,hadoop-slave2:2181,hadoop-slave3:2181</value>
  </property>

  <!-- 配置 zookeeper 的存储位置 -->
  <property>
    <name>yarn.resourcemanager.zk-state-store.parent-path</name>
    <value>/rmstore</value>
  </property>

  <!-- 开启 yarn resourcemanager restart -->
  <property>
    <name>yarn.resourcemanager.recovery.enabled</name>
    <value>true</value>
  </property>

  <!-- 配置 resourcemanager 的状态存储到 zookeeper 中 -->
  <property>
    <name>yarn.resourcemanager.store.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
  </property>

  <!-- 开启 yarn nodemanager restart -->
  <property>
    <name>yarn.nodemanager.recovery.enabled</name>
    <value>true</value>
  </property>

  <!-- 配置 nodemanager IPC 的通信端口 -->
  <property>
    <name>yarn.nodemanager.address</name>
    <value>0.0.0.0:45454</value>
  </property>
</configuration>
// 配置 slaves 文件
$ vimslaves
hadoop-slave1
hadoop-slave2
hadoop-slave3

// 创建配置文件中涉及的目录
$ cd/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/

$ mkdir-p data/tmp

$ mkdir-p data/journal

$ mkdir-p data/namenode

$ mkdir-p data/datanode

// 将 hadoop 工作目录同步到集群其它节点
$ scp-r /home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/hadoop-master2:/home/hadoop/app/cdh/
scp -r/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/ hadoop-slave1:/home/hadoop/app/cdh/
scp -r/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/ hadoop-slave2:/home/hadoop/app/cdh/
scp -r/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/ hadoop-slave3:/home/hadoop/app/cdh/

// 在集群各节点上修改用户环境变量
$ vim .bash_profile
export HADOOP_HOME=/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

// 使修改的环境变量生效
$ source.bash_profile

// 解决本地库文件不存在的问题
在 apache 官网下载 hadoop-2.6.0.tar.gz,解压后将 lib/native 下所有文件复制到 $HADOOP_HOME/lib/native 中。
Hadoop 集群的初始化
// 启动 zookeeper 集群(分别在 slave1、slave2 和 slave3 上执行)$ zkServer.shstart

// 格式化 ZKFC(在 master1 上执行)$ hdfszkfc -formatZK

// 启动 journalnode(分别在 slave1、slave2 和 slave3 上执行)$ hadoop-daemon.shstart journalnode

// 格式化 HDFS(在 master1 上执行)$ hdfsnamenode -format

// 将格式化后 master1 节点 hadoop 工作目录中的元数据目录复制到 master2 节点
$ scp-r app/cdh/hadoop-2.6.0-cdh5.7.1/data/namenode/*hadoop-master2:/home/hadoop/app/cdh/hadoop-2.6.0-cdh5.7.1/data/namenode/

// 初始化完毕后可关闭 journalnode(分别在 slave1、slave2 和 slave3 上执行)$ hadoop-daemon.shstop journalnode

  • Hadoop 2.6.0 HA 高可用集群配置详解(一)
  • Hadoop 2.6.0 HA 高可用集群配置详解(二)
  • Hadoop 2.6.0 HA 高可用集群配置详解(三)

阿里云 2 核 2G 服务器 3M 带宽 61 元 1 年,有高配

腾讯云新客低至 82 元 / 年,老客户 99 元 / 年

代金券:在阿里云专用满减优惠券

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2024-07-24发表,共计10029字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7991252
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
飞牛NAS玩转Frpc并且配置,随时随地直连你的私有云

飞牛NAS玩转Frpc并且配置,随时随地直连你的私有云

飞牛 NAS 玩转 Frpc 并且配置,随时随地直连你的私有云 大家好,我是星哥,最近在玩飞牛 NAS。 在数...
让微信公众号成为 AI 智能体:从内容沉淀到智能问答的一次升级

让微信公众号成为 AI 智能体:从内容沉淀到智能问答的一次升级

让微信公众号成为 AI 智能体:从内容沉淀到智能问答的一次升级 大家好,我是星哥,之前写了一篇文章 自己手撸一...
每年0.99刀,拿下你的第一个顶级域名,详细注册使用

每年0.99刀,拿下你的第一个顶级域名,详细注册使用

每年 0.99 刀,拿下你的第一个顶级域名,详细注册使用 前言 作为长期折腾云服务、域名建站的老玩家,星哥一直...
恶意团伙利用 PHP-FPM 未授权访问漏洞发起大规模攻击

恶意团伙利用 PHP-FPM 未授权访问漏洞发起大规模攻击

恶意团伙利用 PHP-FPM 未授权访问漏洞发起大规模攻击 PHP-FPM(FastCGl Process M...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
国产开源公众号AI知识库 Agent:突破未认证号限制,一键搞定自动回复,重构运营效率

国产开源公众号AI知识库 Agent:突破未认证号限制,一键搞定自动回复,重构运营效率

国产开源公众号 AI 知识库 Agent:突破未认证号限制,一键搞定自动回复,重构运营效率 大家好,我是星哥,...
星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定! 前言 作为 NAS 玩家,你是否总被这些...
多服务器管理神器 Nexterm 横空出世!NAS/Win/Linux 通吃,SSH/VNC/RDP 一站式搞定

多服务器管理神器 Nexterm 横空出世!NAS/Win/Linux 通吃,SSH/VNC/RDP 一站式搞定

多服务器管理神器 Nexterm 横空出世!NAS/Win/Linux 通吃,SSH/VNC/RDP 一站式搞...
零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face 免费服务器 +Docker 快速部署 HertzBeat 监控平台 ...
星哥带你玩飞牛NAS-11:咪咕视频订阅部署全攻略

星哥带你玩飞牛NAS-11:咪咕视频订阅部署全攻略

星哥带你玩飞牛 NAS-11:咪咕视频订阅部署全攻略 前言 在家庭影音系统里,NAS 不仅是存储中心,更是内容...