阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

重新编译、安装spark assembly,使CDH5.5.1支持sparkSQL

447次阅读
没有评论

共计 7010 个字符,预计需要花费 18 分钟才能阅读完成。

CDH 内嵌 spark 版本不支持 spark-sql,sparkR, 如果要使用,需要将 hive 的相关依赖包打进 spark assembly jar 中,下面就是针对 spark-sql 的编译、安装步骤

一. 在任意一台 linux 机器上准备编译环境

spark-1.5.0.tgz 下载地址:https://spark.apache.org/downloads.html

jdk1.7.0_79

scala2.10.4

maven3.3.9

版本都是 spark 官网要求如下,详情可参考:https://spark.apache.org/docs/

Spark runs on Java 7+, Python 2.6+ and R 3.1+. For the Scala API, Spark 1.5.0 uses Scala 2.10. You will need to use a compatible Scala version (2.10.x).

Building Spark using Maven requires Maven 3.3.3 or newer and Java 7+. The Spark build can supply a suitable Maven binary;

配置环境变量如下,并使其生效:source /etc/profile

export JAVA_HOME=/data/jdk1.7.0_79
export M2_HOME=/data/apache-maven-3.3.9
export SCALA_HOME=/data/scala-2.10.4
export PATH=$JAVA_HOME/bin:$M2_HOME/bin:$SCALA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

二. 编译步骤

更多详情点击查看官网:https://spark.apache.org/docs/1.5.0/building-spark.html

1. 重新设置 maven 编译所占空间,因为编译过程复杂、时间长

export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"

2. 解压 spark-1.5.0.tgz(例如到 /data 目录下), 执行 nohup mvn 命令开始后台编译,结果输出到日志文件 )

nohup mvn -Pyarn -PHadoop-2.6 -Dhadoop.version=hadoop2.6.0-cdh5.5.1  -Dscala-2.10.4 -Phive -Phive-thriftserver   -DskipTests clean package  > ./spark-mvn-`date +%Y%m%d%H`.log 2>&1 &

首次编译,需要 2 - 3 小时,具体看网络情况,(我编译多次,最后成功) 编译成功日志末尾如下

[INFO] Reactor Summary:
[INFO] 
[INFO] Spark Project Parent POM ........................... SUCCESS [3.200 s]
[INFO] Spark Project Launcher ............................. SUCCESS [8.887 s]
[INFO] Spark Project Networking ........................... SUCCESS [8.270 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [4.832 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [6.082 s]
[INFO] Spark Project Core ................................. SUCCESS [01:52 min]
[INFO] Spark Project Bagel ................................ SUCCESS [5.129 s]
[INFO] Spark Project GraphX ............................... SUCCESS [13.442 s]
[INFO] Spark Project Streaming ............................ SUCCESS [30.683 s]
[INFO] Spark Project Catalyst ............................. SUCCESS [43.622 s]
[INFO] Spark Project SQL .................................. SUCCESS [53.463 s]
[INFO] Spark Project ML Library ........................... SUCCESS [01:06 min]
[INFO] Spark Project Tools ................................ SUCCESS [2.225 s]
[INFO] Spark Project Hive ................................. SUCCESS [42.020 s]
[INFO] Spark Project REPL ................................. SUCCESS [8.500 s]
[INFO] Spark Project YARN ................................. SUCCESS [9.665 s]
[INFO] Spark Project Hive Thrift Server ................... SUCCESS [7.255 s]
[INFO] Spark Project Assembly ............................. SUCCESS [02:15 min]
[INFO] Spark Project External Twitter ..................... SUCCESS [7.330 s]
[INFO] Spark Project External Flume Sink .................. SUCCESS [5.103 s]
[INFO] Spark Project External Flume ....................... SUCCESS [8.405 s]
[INFO] Spark Project External Flume Assembly .............. SUCCESS [2.928 s]
[INFO] Spark Project External MQTT ........................ SUCCESS [15.932 s]
[INFO] Spark Project External MQTT Assembly ............... SUCCESS [7.792 s]
[INFO] Spark Project External ZeroMQ ...................... SUCCESS [6.057 s]
[INFO] Spark Project External Kafka ....................... SUCCESS [10.135 s]
[INFO] Spark Project Examples ............................. SUCCESS [01:49 min]
[INFO] Spark Project External Kafka Assembly .............. SUCCESS [8.111 s]
[INFO] Spark Project YARN Shuffle Service ................. SUCCESS [5.814 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 12:28 min
[INFO] Finished at: 2016-07-26T16:05:11+08:00
[INFO] Final Memory: 90M/1589M
[INFO] ------------------------------------------------------------------------

同时在如下目录会找到生成的 spark assembly 的 jar

/data/spark-1.5.0/assembly/target/scala-2.10/spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar

三. 安装 spark assembly

1. 拷贝 assembly jar 包

到 CDH 机器 180.153..,将 jar 包远程拷贝过来,例如到 /home/hadoop 目录下

scp -P 50201 /data/spark-1.5.0/assembly/target/scala-2.10/spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar root@180.153.*.*:/home/hadoop

然后再复制到 CDH 的 jars 目录下, 如果已存在,将其备份后删除

cp -p /home/hadoop/spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar /opt/cloudera/parcels/CDH-5.5.1-1.cdh5.5.1.p0.11/jars

2. 替换 CDH 中 spark 下的 assembly jar 包

其实就是修改软连接 spark-assembly.jar 指向 CDH 的 jars 目录下的 spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar,软连接所在路径:
/opt/cloudera/parcels/CDH/lib/spark/lib,删除原来的,新增连接

ln -s ../../../jars/spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar  
ln -s  spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar  spark-assembly.jar

查看软连接情况

[root@db1 lib]# ll
total 209204
-rw-r--r-- 1 root root     21645 Dec  3  2015 python.tar.gz
lrwxrwxrwx 1 root root        68 Jan 14  2016 spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar -> ../../../jars/spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar
lrwxrwxrwx 1 root root        54 Jan 14  2016 spark-assembly.jar -> spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar
lrwxrwxrwx 1 root root        68 Jan 14  2016 spark-examples-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar -> ../../../jars/spark-examples-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar
lrwxrwxrwx 1 root root        54 Jan 14  2016 spark-examples.jar -> spark-examples-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar
[root@db1 lib]# 

3. 拷贝 spark-sql 运行文件

从 spark 源文件的 bin 下拷贝到 CDH 的 spark 的 bin 目录下

scp -P 50201 /data/spark-1.5.0/bin/spark-sql root@180.153.*.*:/opt/cloudera/parcels/CDH/lib/spark/bin

4. 配置环境变量

export HADOOP_HOME=/opt/cloudera/parcels/CDH/lib/hadoop
export HADOOP_CONF_DIR=/etc/hadoop/conf
export HADOOP_CMD=/opt/cloudera/parcels/CDH/bin/hadoop
export HIVE_HOME=/opt/cloudera/parcels/CDH/lib/hive
export SPARK_HOME=/opt/cloudera/parcels/CDH/lib/spark
export SCALA_HOME=/usr/local/scala-2.10.4
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin:$SCALA_HOME/bin

5. 拷贝 assembly jar 包拷贝到 HDFS

首先需要将 assembly jar 拷贝到 HDFS 的 /user/spark/share/lib 目录下,修改文件权限为 755

hadoop fs -put /home/hadoop/spark-assembly-1.5.0-cdh5.5.1-hadoop2.6.0-cdh5.5.1.jar  /user/spark/share/lib

6. 在 CM 上配置

  • 登陆 CM, 修改 spark 的服务范围为 assembly jar 在 HDFS 中的路径
/user/spark/share/lib/spark-assembly-1.5.0-hadoop2.6.0.jar

重新编译、安装 spark assembly,使 CDH5.5.1 支持 sparkSQL

  • 修改 spark 的高级配置
spark.yarn.jar=hdfs://bestCluster/user/spark/share/lib/spark-assembly-1.5.0-hadoop2.6.0.jar

export HIVE_CONF_DIR=/opt/cloudera/parcels/CDH/lib/hive/conf

重新编译、安装 spark assembly,使 CDH5.5.1 支持 sparkSQL

  • 点击保存更改,再部署客户端配置即可。

7. 运行 spark-sql

已配置过环境变量,可在任意目录下执行 spark-sql

[hadoop@db1 ~]$ spark-sql
...
...
16/07/27 16:04:52 INFO metastore: Trying to connect to metastore with URI thrift://nn1.hadoop:9083
16/07/27 16:04:52 INFO metastore: Connected to metastore.
16/07/27 16:04:52 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/07/27 16:04:53 INFO SessionState: Created local directory: /tmp/462a9698-5bb6-4d17-bce3-9e162cfd40f8_resources
16/07/27 16:04:53 INFO SessionState: Created HDFS directory: /tmp/hive/hadoop/462a9698-5bb6-4d17-bce3-9e162cfd40f8
16/07/27 16:04:53 INFO SessionState: Created local directory: /tmp/hadoop/462a9698-5bb6-4d17-bce3-9e162cfd40f8
16/07/27 16:04:53 INFO SessionState: Created HDFS directory: /tmp/hive/hadoop/462a9698-5bb6-4d17-bce3-9e162cfd40f8/_tmp_space.db
SET spark.sql.hive.version=1.2.1
SET spark.sql.hive.version=1.2.1
spark-sql> 

tips:

1. 新建 / 拷贝的文件要赋予读写权限

2. 替换原有文件前,注意查看原有文件所属用户、软连接等信息

以上,完结!

本文永久更新链接地址 :http://www.linuxidc.com/Linux/2016-08/133847.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计7010字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
8002583
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
300元就能买到的”小钢炮”?惠普7L四盘位小主机解析

300元就能买到的”小钢炮”?惠普7L四盘位小主机解析

  300 元就能买到的 ” 小钢炮 ”?惠普 7L 四盘位小主机解析 最近...
星哥带你玩飞牛 NAS-10:备份微信聊天记录、数据到你的NAS中!

星哥带你玩飞牛 NAS-10:备份微信聊天记录、数据到你的NAS中!

星哥带你玩飞牛 NAS-10:备份微信聊天记录、数据到你的 NAS 中! 大家对「数据安全感」的需求越来越高 ...
星哥带你玩飞牛NAS-11:咪咕视频订阅部署全攻略

星哥带你玩飞牛NAS-11:咪咕视频订阅部署全攻略

星哥带你玩飞牛 NAS-11:咪咕视频订阅部署全攻略 前言 在家庭影音系统里,NAS 不仅是存储中心,更是内容...
240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

  240 元左右!五盘位 NAS 主机,7 代 U 硬解 4K 稳如狗,拓展性碾压同价位 在 NA...
零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face 免费服务器 +Docker 快速部署 HertzBeat 监控平台 ...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择

星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择

星哥带你玩飞牛 NAS-12:开源笔记的进化之路,效率玩家的新选择 前言 如何高效管理知识与笔记,已经成为技术...
星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定! 前言 作为 NAS 玩家,你是否总被这些...
免费无广告!这款跨平台AI RSS阅读器,拯救你的信息焦虑

免费无广告!这款跨平台AI RSS阅读器,拯救你的信息焦虑

  免费无广告!这款跨平台 AI RSS 阅读器,拯救你的信息焦虑 在算法推荐主导信息流的时代,我们...
告别Notion焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁”

告别Notion焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁”

  告别 Notion 焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁” 引言 在数字笔记工...
你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你 为什么要用宝塔跑分? 宝塔跑分其实就是对 CPU、内存、磁盘、IO 做...