阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Apache Flink 简单介绍和入门

537次阅读
没有评论

共计 3984 个字符,预计需要花费 10 分钟才能阅读完成。

What Apache Flink

Apache Flink 是一个 == 分布式大数据处理引擎 ==,可对 == 有限数据流和无限数据流 == 进行 == 有状态计算 ==。可部署在 == 各种集群环境 ==,对各种大小的数据规模进行快速计算。

分布式大数据处理引擎
  • 是一个分布式的、高可用的用于大数据处理的计算引擎

    有限流和无限流
  • 有限流:有始有终的数据流。即传统意义上的批数据,进行批处理
  • 无限流:有始无终的数据流。即现实生活中的流数据,进行流处理

    有状态计算
  • 良好的状态机制,进行较好的容错处理和任务恢复。同时实现 Exactly-Once 语义。

    各种集群环境
  • 可部署 standalone、Flink on yarn、Flink on Mesos、Flink on k8s 等等

Flink Application

Streams

数据在真实世界中是不停产生不停发出的,所以数据处理也应该还原真实,做到真正的流处理。而批处理则是流处理的特殊情况

  • 即上面说的有限流和无限流,贴官网图说明。
    Apache Flink 简单介绍和入门

State

在流计算场景中,其实所有流计算本质上都是增量计算(Incremental Processing)。
例如,计算前几个小时或者一直以来的某个指标(PV、UV 等),计算完一条数据之后需要保存其计算结果即状态,以便和下一条计算结果合并。
另外,保留计算状态,进行 CheckPoint 可以很好地实现流计算的容错和任务恢复,也可以实现 Exactly Once 处理语义

Time

三类时间:

  • Event Time:事件真实产生的时间
  • Processing Time:事件被 Flink 程序处理的时间
  • Ingestion Time:事件进入到 Flink 程序的时间

API

API 分三层,越接近 SQL 层,越抽象,灵活性越低,但更简单易用。

  • SQL/Table 层:直接使用 SQL 进行数据处理
  • DataStream/DataSet API:最核心的 API,对流数据进行处理,可在其上实现自定义的 WaterMark、Windows、State 等操作
  • ProcessFunction:也叫 RunTime 层,最底层的 API,带状态的事件驱动。
    Apache Flink 简单介绍和入门

Flink Architecture

Data Pipeline Applications

即 real-time Stream ETL:流式 ETL 拆分。
通常,ETL 都是通过定时任务调度 SQL 文件或者 MR 任务来执行的。在实时 ETL 场景中,将批量 ETL 逻辑写到流处理中,分散计算压力和提高计算结果的实时性。
多用于实时数仓、实时搜索引擎等
Apache Flink 简单介绍和入门

Data Analytics Applications

即数据分析,包括流式数据分析和批量数据分析。例如实时报表、实时大屏。
Apache Flink 简单介绍和入门

Event-driven Applications

即事件驱动应用,在一个有状态的计算过程中,通常情况下都是将状态保存在第三方系统(如 Hbase Redis 等)中。
而在 Flink 中,状态是保存在内部程序中,减少了状态存取的不必要的 I / O 开销,更大吞吐量和更低延时。
Apache Flink 简单介绍和入门

第一个 Flink 程序

开发环境要求

主要是 Java 环境和 Maven 环境。Java 要求 JDK1.8,Maven 要求 3.0 以上,开发工具推荐使用 ItelliJ IDEA,社区说法:Eclipse 在 Java 和 Scala 混合编程下有问题,故不推荐。

代码示例:

package source.streamDataSource;


import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;


public class SocketWindowWordCount {public static void main(String[] args) throws Exception{if(args.length!=2){System.err.println("Usage:\nSocketWindowWordCount hostname port");
        }

        // 获取程序参数
        String hostname = args[0];
        int port = Integer.parseInt(args[1]);

        // 入口类,用于设置环境和参数等
        StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 设置 Time 类型
        see.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

        // 从指定 IP 端口 读取流数据,返回一个 DataStreamSource
        DataStreamSource<String> text = see.socketTextStream(hostname, port, "\n", 5);

        // 在 DataStreamSource 上做操作即 transformation 
        DataStream<Tuple2<String, Integer>> windowCount = text
                // flatMap , FlatMap 接口的实现:将获取到的数据分割,并每个元素组合成 (word, count) 形式
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> collector) throws Exception {for (String word : value.split("\\s")) {collector.collect(Tuple2.of(word, 1));
                }
            }
        })
                // 按位置指定 key,进行聚合操作
                .keyBy(0)
                // 指定窗口大小
                .timeWindow(Time.seconds(5))
                // 在每个 key 上做 sum
                // reduce 和 sum 的实现
//                .reduce(new ReduceFunction<Tuple2<String, Integer>>() {
//                    @Override
//                    public Tuple2<String, Integer> reduce(Tuple2<String, Integer> stringIntegerTuple2, Tuple2<String, Integer> t1) throws Exception {//                        return Tuple2.of(stringIntegerTuple2.f0, stringIntegerTuple2.f1+t1.f1);
//                    }
//                });
                .sum(1);

        // 一个线程执行
        windowCount.print().setParallelism(1);
        see.execute("Socket Window WordCount");

        // 其他 transformation 操作示例
//        windowCount
//                .map(new MapFunction<Tuple2<String,Integer>, String>() {
//                    @Override
//                    public String map(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
//                        return stringIntegerTuple2.f0;
//                    }
//                })
//                .print();
//
//        text.filter(new FilterFunction<String>() {
//            @Override
//            public boolean filter(String s) throws Exception {//                return s.contains("h");
//            }
//        })
//                .print();
//
//        SplitStream<String> split = text.split(new OutputSelector<String>() {
//            @Override
//            public Iterable<String> select(String value) {//                ArrayList<String> strings = new ArrayList<>();
//                if (value.contains("h"))
//                    strings.add("Hadoop");
//                else
//                    strings.add("noHadoop");
//                return strings;
//
//            }
//        });
//
//        split.select("hadoop").print();
//        split.select("noHadoop").map(new MapFunction<String, String>() {
//            @Override
//            public String map(String s) throws Exception {
//
//                return s.toUpperCase();
//            }
//        }).print();}
}

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计3984字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7992142
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
终于收到了以女儿为原型打印的3D玩偶了

终于收到了以女儿为原型打印的3D玩偶了

终于收到了以女儿为原型打印的 3D 玩偶了 前些日子参加某网站活动,获得一次实物 3D 打印的机会,于是从众多...
零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face 免费服务器 +Docker 快速部署 HertzBeat 监控平台 ...
手把手教你,购买云服务器并且安装宝塔面板

手把手教你,购买云服务器并且安装宝塔面板

手把手教你,购买云服务器并且安装宝塔面板 前言 大家好,我是星哥。星哥发现很多新手刚接触服务器时,都会被“选购...
星哥带你玩飞牛NAS-8:有了NAS你可以干什么?软件汇总篇

星哥带你玩飞牛NAS-8:有了NAS你可以干什么?软件汇总篇

星哥带你玩飞牛 NAS-8:有了 NAS 你可以干什么?软件汇总篇 前言 哈喽各位玩友!我是是星哥,不少朋友私...
如何安装2026年最强个人助理ClawdBot、完整安装教程

如何安装2026年最强个人助理ClawdBot、完整安装教程

如何安装 2026 年最强个人助理 ClawdBot、完整安装教程 一、前言 学不完,根本学不完!近期,一款名...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛 NAS-14:解锁公网自由!Lucky 功能工具安装使用保姆级教程 作为 NAS 玩家,咱们最...
自己手撸一个AI智能体—跟创业大佬对话

自己手撸一个AI智能体—跟创业大佬对话

自己手撸一个 AI 智能体 — 跟创业大佬对话 前言 智能体(Agent)已经成为创业者和技术人绕...
仅2MB大小!开源硬件监控工具:Win11 无缝适配,CPU、GPU、网速全维度掌控

仅2MB大小!开源硬件监控工具:Win11 无缝适配,CPU、GPU、网速全维度掌控

还在忍受动辄数百兆的“全家桶”监控软件?后台偷占资源、界面杂乱冗余,想查个 CPU 温度都要层层点选? 今天给...
星哥带你玩飞牛NAS-16:不再错过公众号更新,飞牛NAS搭建RSS

星哥带你玩飞牛NAS-16:不再错过公众号更新,飞牛NAS搭建RSS

  星哥带你玩飞牛 NAS-16:不再错过公众号更新,飞牛 NAS 搭建 RSS 对于经常关注多个微...
星哥带你玩飞牛NAS硬件 01:捡垃圾的最爱双盘,暴风二期矿渣为何成不老神话?

星哥带你玩飞牛NAS硬件 01:捡垃圾的最爱双盘,暴风二期矿渣为何成不老神话?

星哥带你玩飞牛 NAS 硬件 01:捡垃圾的最爱双盘,暴风二期矿渣为何成不老神话? 前言 在选择 NAS 用预...