阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

基于Redis扩展模块的布隆过滤器使用

346次阅读
没有评论

共计 6085 个字符,预计需要花费 16 分钟才能阅读完成。

什么是布隆过滤器?
它实际上是一个很长的二进制向量和一系列随机映射函数。把一个目标元素通过多个 hash 函数的计算,将多个随机计算出的结果映射到二进制向量的位中,依次来间接标记一个元素是否存在于一个集合中。
布隆过滤器可以做什么?
布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
布隆过滤器特点
如果布隆过滤器显示一个元素不存在于集合中,那么这个元素 100% 不存在与集合当中
如果布隆过滤器显示一个元素存在于集合中,那么很有可能存在,可能性取决于对布隆过滤器的定义(BF.RESERVE {key} {error_rate} {capacity})

布隆过滤器的原理图,这个就很容易理解了。

基于 Redis 扩展模块的布隆过滤器使用

 

Redis 中的布隆过滤器实现(rebloom 模块扩展)

下载并编译
git clone git://github.com/RedisLabsModules/rebloom
cd rebloom
make
配置文件中加载 rebloom
loadmodule /your_path/rebloom.so
重启 Redis 服务器即可
./bin/redis-cli -h 127.0.0.1 -p 6379 -a ****** shutdown
./bin/redis-server redis.conf

rebloom 在 Redis 中的使用

bloom filter 定义

BF.RESERVE {key} {error_rate} {capacity}
使用给定的期望错误率和初始容量创建空的 Bloom 过滤器(如果不存在的话)。如果打算向 Bloom 过滤器中添加许多项,则此命令非常有用,否则只能使用 BF.ADD 添加项。
初始容量和错误率将决定过滤器的性能和内存使用情况。一般来说,错误率越小(即对误差的容忍度越低),每个过滤器条目的空间消耗就越大。

bloom filter 基本操作

1,BF.ADD {key} {item}
单条添加元素
向 Bloom filter 添加一个元素,如果该 key 不存在,则创建该 key(过滤器)。
如果项是新插入的,则为“1”; 如果项以前可能存在,则为“0”。

2,BF.MADD {key} {item} [item…]
批量添加元素
布尔数 (整数) 的数组。返回值为 0 或 1 的范围的数据,这取决于是否将相应的输入元素新添加到过滤器中,或者是否已经存在。

3,BF.EXISTS {key} {item}
判断单个元素是否存在
如果存在,返回 1,否则返回 0

4,BF.MEXISTS {key} {item} [item…]
判断多个元素是否存在
布尔数 (整数) 的数组。返回值为 0 或 1 的范围的数据,这取决于是否将相应的元是否已经存在于 key 中。

127.0.0.1:8001>  bf.reserve bloom_filter_test 0.0000001 1000000
OK
127.0.0.1:8001>  bf.reserve bloom_filter_test 0.0000001 1000000
(error) ERR item exists
127.0.0.1:8001>
127.0.0.1:8001>
127.0.0.1:8001> bf.add bloom_filter_test key1
(integer) 1
127.0.0.1:8001> bf.add bloom_filter_test key2
(integer) 1
127.0.0.1:8001>
127.0.0.1:8001> bf.madd bloom_filter_test key2 key3 key4 key5
1) (integer) 0
2) (integer) 1
3) (integer) 1
4) (integer) 1
127.0.0.1:8001> bf.exists bloom_filter_test key2
(integer) 1
127.0.0.1:8001> bf.exists bloom_filter_test key3
(integer) 1
127.0.0.1:8001> bf.mexists bloom_filter_test key3 key4 key5
1) (integer) 1
2) (integer) 1
3) (integer) 1
127.0.0.1:8001>

5,bf.insert

bf.insert{key} [CAPACITY {cap}] [ERROR {ERROR}] [NOCREATE] ITEMS {item…}
该命令将向 bloom 过滤器添加一个或多个项,如果它还不存在,则默认情况下创建它。有几个参数可用于修改此行为。
key: 过滤器的名称
capacity: 如果指定了,应该在后面加上要创建的过滤器的所需容量。如果过滤器已经存在,则忽略此参数。如果自动创建了过滤器,并且没有此参数,则使用默认容量(在模块级指定)。见 bf.reserve。
error: 如果指定了,后面应该跟随着新创建的过滤器的错误率(如果它还不存在)。如果自动创建过滤器而没有指定错误,则使用默认的模块级错误率。见 bf.reserve。
nocreate: 如果指定,表示如果过滤器不存在,就不应该创建它。如果过滤器还不存在,则返回一个错误,而不是自动创建它。如果需要在创建过滤器和添加过滤器之间进行严格的分离,可以使用这种方法。将 NOCREATE 与容量或错误一起指定是一个错误。
item: 指示要添加到筛选器的项的开头。必须指定此参数。

127.0.0.1:8001> bf.insert bloom_filter_test2 items  key1 key2 key3
1) (integer) 1
2) (integer) 1
3) (integer) 1
127.0.0.1:8001> bf.insert bloom_filter_test2 items  key1 key2 key3
1) (integer) 0
2) (integer) 0
3) (integer) 0
127.0.0.1:8001> bf.insert bloom_filter_test2 capacity  10000 error 0.00001  nocreate  items  key1 key2 key3
1) (integer) 0
2) (integer) 0
3) (integer) 0
127.0.0.1:8001>
127.0.0.1:8001> bf.insert bloom_filter_test2 capacity  10000 error 0.00001  nocreate  items  key4 key5 key6
1) (integer) 1
2) (integer) 1
3) (integer) 1
127.0.0.1:8001>

bf 持久化操作

BF.SCANDUMP {key} {iter}

对 bloom 过滤器进行增量保存。这对于不能适应常规 save 和 restore 模型的大型 bloom filter 非常有用。
第一次调用这个命令时,iter 的值应该是 0。这个命令将返回连续的 (iter, data) 对,直到(0,NULL),以表示完成
Python 伪代码演示:

chunks = []
iter = 0
while True:
    iter, data = BF.SCANDUMP(key, iter)
    if iter == 0:
        break
    else:
        chunks.append([iter, data])

# Load it back
for chunk in chunks:
    iter, data = chunk
    BF.LOADCHUNK(key, iter, data)
bf.scandump 示例
127.0.0.1:8001> bf.scandump bloom_filter_test2 0
1) (integer) 1
2) "\x06\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x04\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00{\x14\xaeG\xe1z\x84?\x88\x16\x8a\xc5\x8c+#@\a\x00\x00\x00j\x00\x00\x00\n"
127.0.0.1:8001> bf.scandump bloom_filter_test2 1
1) (integer) 129
2) "\x00\x00\x00\x00\xa2\x00\x00\x00\x00\x00\x00B\x01\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00 \x00\x00\b\x00\x00\x00\x00\b\x00\x00@\x00\x01\x04\x18\x02\x00\x00\x00\x82\x00\x00\x80@\x00\b\x00\x00\x00\x00 \x00\x00@\x00\x00\x00\x00\x18\b\x00\b\x00\b\x00\x80B\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00 (\x00\x00\x00\x00@\x00\x00\x00\x00@\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x80\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\b"
127.0.0.1:8001> bf.scandump bloom_filter_test2 129
1) (integer) 0
2) ""
127.0.0.1:8001>

blool filter 数据类型的属性

bf.debug

这里可以看到,随着 bloom filter 元素的增加,其空间容量也在不断地增加

127.0.0.1:8001> bf.debug bloom_filter_test
1) "size:5"
2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:5 ratio:1e-07"
127.0.0.1:8001>
127.0.0.1:8001>
127.0.0.1:8001> bf.debug bloom_filter_test
1) "size:128955"
2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:128955 ratio:1e-07"
127.0.0.1:8001>
127.0.0.1:8001>
127.0.0.1:8001> bf.debug bloom_filter_test
1) "size:380507"
2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:380507 ratio:1e-07"
127.0.0.1:8001>
127.0.0.1:8001>
127.0.0.1:8001> bf.debug bloom_filter_test
1) "size:569166"
2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:569166 ratio:1e-07"
127.0.0.1:8001>
127.0.0.1:8001>
127.0.0.1:8001> bf.debug bloom_filter_test
1) "size:852316"
2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:852316 ratio:1e-07"
127.0.0.1:8001>
127.0.0.1:8001>
127.0.0.1:8001> bf.debug bloom_filter_test
1) "size:1000005"
2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:1000005 ratio:1e-07"
127.0.0.1:8001

关于布隆过滤器数据类型的空间分析

redis 的 bigkeys 选项可以分析整个实例中的 big keys 信息,但是无法分析出 MBbloom– 类型的 key 值得大小

基于 Redis 扩展模块的布隆过滤器使用

这里基于 Redis 的 debug object 功能,实现对 MBbloom– 类型的 key 的统计(没有找到怎么用 Python 执行 bf.debug 原生命令的执行方式)。

import redis
import sys
import time
import random

def get_bf_bigkeys():
    try:
        redis_conn = redis.StrictRedis(host='127.0.0.1', port=8001, db=0, password='******')
    except:
        print("connect redis error")
        sys.exit(1)
    dict_key = {}
    cursor = 1
    while cursor != 0:
        if cursor == 1:
            key = redis_conn.scan(cursor=0, match='*',  count=5000)
        else:
            key = redis_conn.scan(cursor=cursor,match='*', count=5000)
        cursor = key[0]
        if len(key[1]) > 0:
            for var in key[1]:
                if str(redis_conn.type(var), encoding = "utf-8") == 'MBbloom--':
                    info = redis_conn.debug_object(var)
                    dict_key[var] = float(info['serializedlength']) / 1024 / 1024  # byte ---> mb

        res = sorted(dict_key.items(), key=lambda dict_key: dict_key[1], reverse=True)
        for i in range(10 if len(res) > 10 else len(res)):
            print(res[i])


if __name__ == "__main__":
    get_bf_bigkeys()

统计结果示例如下

[root@tencent02 redis8001]# python3 static_big_bf_keys.py
(b'bloom_filter_test', 4.000059127807617)
(b'my_bf2', 0.04577445983886719)
(b'bloom_filter_test2', 0.00014019012451171875)
(b'my_bf1', 0.0001220703125)
[root@tencent02 redis8001]#

 

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-22发表,共计6085字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7972975
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
安装Black群晖DSM7.2系统安装教程(在Vmware虚拟机中、实体机均可)!

安装Black群晖DSM7.2系统安装教程(在Vmware虚拟机中、实体机均可)!

安装 Black 群晖 DSM7.2 系统安装教程(在 Vmware 虚拟机中、实体机均可)! 前言 大家好,...
240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

  240 元左右!五盘位 NAS 主机,7 代 U 硬解 4K 稳如狗,拓展性碾压同价位 在 NA...
【1024程序员】我劝你赶紧去免费领一个AWS、华为云等的主机

【1024程序员】我劝你赶紧去免费领一个AWS、华为云等的主机

【1024 程序员】我劝你赶紧去免费领一个 AWS、华为云等的主机 每年 10 月 24 日,程序员们都会迎来...
免费无广告!这款跨平台AI RSS阅读器,拯救你的信息焦虑

免费无广告!这款跨平台AI RSS阅读器,拯救你的信息焦虑

  免费无广告!这款跨平台 AI RSS 阅读器,拯救你的信息焦虑 在算法推荐主导信息流的时代,我们...
升级自动部署更新SSL证书系统、申请godaddy的APIKEY

升级自动部署更新SSL证书系统、申请godaddy的APIKEY

升级自动部署更新 SSL 证书系统、申请 godaddy 的 APIKEY 公司之前花钱购买的 ssl 证书快...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
自己手撸一个AI智能体—跟创业大佬对话

自己手撸一个AI智能体—跟创业大佬对话

自己手撸一个 AI 智能体 — 跟创业大佬对话 前言 智能体(Agent)已经成为创业者和技术人绕...
星哥带你玩飞牛NAS-11:咪咕视频订阅部署全攻略

星哥带你玩飞牛NAS-11:咪咕视频订阅部署全攻略

星哥带你玩飞牛 NAS-11:咪咕视频订阅部署全攻略 前言 在家庭影音系统里,NAS 不仅是存储中心,更是内容...
颠覆 AI 开发效率!开源工具一站式管控 30+大模型ApiKey,秘钥付费+负载均衡全搞定

颠覆 AI 开发效率!开源工具一站式管控 30+大模型ApiKey,秘钥付费+负载均衡全搞定

  颠覆 AI 开发效率!开源工具一站式管控 30+ 大模型 ApiKey,秘钥付费 + 负载均衡全...
告别Notion焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁”

告别Notion焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁”

  告别 Notion 焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁” 引言 在数字笔记工...
如何安装2026年最强个人助理ClawdBot、完整安装教程

如何安装2026年最强个人助理ClawdBot、完整安装教程

如何安装 2026 年最强个人助理 ClawdBot、完整安装教程 一、前言 学不完,根本学不完!近期,一款名...