阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Hadoop2.3+Hive0.12集群部署

422次阅读
没有评论

共计 16210 个字符,预计需要花费 41 分钟才能阅读完成。

0 机器说明

 

IP

Role

192.168.1.106

NameNodeDataNodeNodeManagerResourceManager

192.168.1.107

SecondaryNameNodeNodeManagerDataNode

192.168.1.108

NodeManagerDataNode

192.168.1.106

HiveServer

1 打通无密钥

配置 HDFS,首先就得把机器之间的无密钥配置上。我们这里为了方便,把机器之间的双向无密钥都配置上。

(1)产生 RSA 密钥信息

ssh-keygen -t rsa

一路回车,直到产生一个图形结构,此时便产生了 RSA 的 私钥 id_rsa 和公钥 id_rsa.pub,位于 /home/user/.ssh 目录中。

(2)将所有机器节点的 ssh 证书公钥拷贝至 /home/user/.ssh/authorized_keys 文件中,三个机器都一样。

(3)切换到 root 用户,修改/etc/ssh/sshd_config 文件,配置:

RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile      .ssh/authorized_keys

(4)重启 ssh 服务:service sshd restart

(5)使用 ssh 服务,远程登录:

Hadoop2.3+Hive0.12 集群部署

ssh 配置成功。

————————————– 分割线 ————————————–

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

————————————– 分割线 ————————————–

2 安装 Hadoop2.3

将对应的 hadoop2.3 的 tar 包解压缩到本地之后,主要就是修改配置文件,文件的路径都在 etc/hadoop 中,下面列出几个主要的。

(1)core-site.xml

 
 1 <configuration>
 2     <property>
 3         <name>hadoop.tmp.dir</name>
 4         <value>file:/home/sdc/tmp/hadoop-${user.name}</value>
 5     </property>
 6     <property>
 7         <name>fs.default.name</name>
 8         <value>hdfs://192.168.1.106:9000</value>
 9     </property>
10 </configuration>
 

(2)hdfs-site.xml

 
 1 <configuration>
 2     <property>
 3         <name>dfs.replication</name>
 4         <value>3</value>
 5     </property>
 6     <property>
 7          <name>dfs.namenode.secondary.http-address</name>
 8          <value>192.168.1.107:9001</value>
 9     </property>
10     <property>
11          <name>dfs.namenode.name.dir</name>
12          <value>file:/home/sdc/dfs/name</value>
13     </property>
14     <property>
15          <name>dfs.datanode.data.dir</name>
16          <value>file:/home/sdc/dfs/data</value>
17     </property>
18     <property>
19          <name>dfs.replication</name>
20          <value>3</value>
21     </property>
22     <property>
23          <name>dfs.webhdfs.enabled</name>
24          <value>true</value>
25     </property>
26 </configuration>
 

(3)hadoop-env.sh

主要是将其中的 Java_HOME 赋值:

export JAVA_HOME=/usr/local/jdk1.6.0_27

(4)mapred-site.xml

 
 1 <configuration>
 2     <property>
 3         <!-- 使用 yarn 作为资源分配和任务管理框架 -->
 4         <name>mapreduce.framework.name</name>
 5         <value>yarn</value>
 6     </property>
 7     <property>
 8         <!-- JobHistory Server 地址 -->
 9         <name>mapreduce.jobhistory.address</name>
10         <value>CentOS1:10020</value>
11     </property>
12     <property>
13         <!-- JobHistory WEB 地址 -->
14         <name>mapreduce.jobhistory.webapp.address</name>
15         <value>centos1:19888</value>
16     </property>
17     <property>
18         <!-- 排序文件的时候一次同时最多可并行的个数 -->
19         <name>mapreduce.task.io.sort.factor</name>
20         <value>100</value>
21     </property>
22     <property>
23         <!-- reuduce shuffle 阶段并行传输数据的数量 -->
24         <name>mapreduce.reduce.shuffle.parallelcopies</name>
25         <value>50</value>
26     </property>
27     <property>
28         <name>mapred.system.dir</name>
29         <value>file:/home/sdc/Data/mr/system</value>
30     </property>
31     <property>
32         <name>mapred.local.dir</name>
33         <value>file:/home/sdc/Data/mr/local</value>
34     </property>
35     <property>
36         <!-- 每个 Map Task 需要向 RM 申请的内存量 -->
37         <name>mapreduce.map.memory.mb</name>
38         <value>1536</value>
39     </property>
40     <property>
41         <!-- 每个 Map 阶段申请的 Container 的 JVM 参数 -->
42         <name>mapreduce.map.java.opts</name>
43         <value>-Xmx1024M</value>
44     </property>
45     <property>
46         <!-- 每个 Reduce Task 需要向 RM 申请的内存量 -->
47         <name>mapreduce.reduce.memory.mb</name>
48         <value>2048</value>
49     </property>
50     <property>
51         <!-- 每个 Reduce 阶段申请的 Container 的 JVM 参数 -->
52         <name>mapreduce.reduce.java.opts</name>
53         <value>-Xmx1536M</value>
54     </property>
55     <property>
56         <!-- 排序内存使用限制 -->
57         <name>mapreduce.task.io.sort.mb</name>
58         <value>512</value>
59     </property>
60 </configuration>
 

注意上面的几个内存大小的配置,其中 Container 的大小一般都要小于所能申请的最大值,否则所运行的 Mapreduce 任务可能无法运行。

(5)yarn-site.xml

 
 1 <configuration>
 2     <property>
 3         <name>yarn.nodemanager.aux-services</name>
 4         <value>mapreduce_shuffle</value>
 5     </property>
 6     <property>
 7         <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 8         <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 9     </property>
10     <property>
11         <name>yarn.resourcemanager.address</name>
12         <value>centos1:8080</value>
13     </property>
14     <property>
15         <name>yarn.resourcemanager.scheduler.address</name>
16         <value>centos1:8081</value>
17     </property>
18     <property>        
19         <name>yarn.resourcemanager.resource-tracker.address</name>
20         <value>centos1:8082</value>
21     </property>
22     <property>
23         <!-- 每个 nodemanager 可分配的内存总量 -->
24         <name>yarn.nodemanager.resource.memory-mb</name>
25         <value>2048</value>
26     </property>
27     <property>
28         <name>yarn.nodemanager.remote-app-log-dir</name>
29         <value>${hadoop.tmp.dir}/nodemanager/remote</value>
30     </property>
31     <property>
32         <name>yarn.nodemanager.log-dirs</name>
33         <value>${hadoop.tmp.dir}/nodemanager/logs</value>
34     </property>
35     <property>
36         <name>yarn.resourcemanager.admin.address</name>
37         <value>centos1:8033</value>
38     </property>
39     <property>
40         <name>yarn.resourcemanager.webapp.address</name>
41         <value>centos1:8088</value>
42     </property>
43 </configuration>
 

 

此外,配置好对应的 HADOOP_HOME 环境变量之后,将当前 hadoop 文件发送到所有的节点,在 sbin 目录中有 start-all.sh 脚本,启动可见:

Hadoop2.3+Hive0.12 集群部署

Hadoop2.3+Hive0.12 集群部署

Hadoop2.3+Hive0.12 集群部署

启动完成之后,有如下两个 WEB 界面:

http://192.168.1.106:8088/cluster

Hadoop2.3+Hive0.12 集群部署

 

http://192.168.1.106:50070/dfshealth.html

Hadoop2.3+Hive0.12 集群部署

 

使用最简单的命令检查下 HDFS:

Hadoop2.3+Hive0.12 集群部署

更多详情见请继续阅读下一页的精彩内容:http://www.linuxidc.com/Linux/2014-07/104302p2.htm

3 安装 Hive0.12

将 Hive 的 tar 包解压缩之后,首先配置下 HIVE_HOME 的环境变量。然后便是一些配置文件的修改:

(1)hive-env.sh

将其中的 Hadoop_HOME 变量修改为当前系统变量值。

(2)hive-site.xml

  • 修改 hive.server2.thrift.sasl.qop 属性

Hadoop2.3+Hive0.12 集群部署

修改为:

Hadoop2.3+Hive0.12 集群部署

 

  • 将 hive.metastore.schema.verification 对应的值改为 false

强制 metastore 的 schema 一致性,开启的话会校验在 metastore 中存储的信息的版本和 hive 的 jar 包中的版本一致性,并且关闭自动 schema 迁移,用户必须手动的升级 hive 并且迁移 schema,关闭的话只会在版本不一致时给出警告。

  • 修改 hive 的元数据存储位置,改为 MySQL 存储:
 
 1 <property>
 2   <name>Javax.jdo.option.ConnectionURL</name>
 3   <value>jdbc:mysql://localhost:3306/hive?characterEncoding=UTF-8</value>
 4   <description>JDBC connect string for a JDBC metastore</description>
 5 </property>
 6 
 7 <property>
 8   <name>javax.jdo.option.ConnectionDriverName</name>
 9   <value>com.mysql.jdbc.Driver</value>
10   <description>Driver class name for a JDBC metastore</description>
11 </property>
12 
13 <property>
14   <name>javax.jdo.PersistenceManagerFactoryClass</name>
15   <value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value>
16   <description>class implementing the jdo persistence</description>
17 </property>
18 
19 <property>
20   <name>javax.jdo.option.DetachAllOnCommit</name>
21   <value>true</value>
22   <description>detaches all objects from session so that they can be used after transaction is committed</description>
23 </property>
24 
25 <property>
26   <name>javax.jdo.option.NonTransactionalRead</name>
27   <value>true</value>
28   <description>reads outside of transactions</description>
29 </property>
30 
31 <property>
32   <name>javax.jdo.option.ConnectionUserName</name>
33   <value>hive</value>
34   <description>username to use against metastore database</description>
35 </property>
36 
37 <property>
38   <name>javax.jdo.option.ConnectionPassword</name>
39   <value>123</value>
40   <description>password to use against metastore database</description>
41 </property>
 

在 bin 下启动 hive 脚本,运行几个 hive 语句:

Hadoop2.3+Hive0.12 集群部署

4 安装 Mysql5.6

见 http://www.cnblogs.com/Scott007/p/3572604.html

5 Pi 计算实例、Hive 表的计算实例运行

在 Hadoop 的安装目录 bin 子目录下,执行 hadoop 自带的示例,pi 的计算,命令为:

./hadoop jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0.jar pi 10 10

运行日志为:

 
 1 Number of Maps  = 10
 2 Samples per Map = 10
 3 14/03/20 23:50:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
 4 Wrote input for Map #0
 5 Wrote input for Map #1
 6 Wrote input for Map #2
 7 Wrote input for Map #3
 8 Wrote input for Map #4
 9 Wrote input for Map #5
10 Wrote input for Map #6
11 Wrote input for Map #7
12 Wrote input for Map #8
13 Wrote input for Map #9
14 Starting Job
15 14/03/20 23:50:06 INFO client.RMProxy: Connecting to ResourceManager at CentOS1/192.168.1.106:8080
16 14/03/20 23:50:07 INFO input.FileInputFormat: Total input paths to process : 10
17 14/03/20 23:50:07 INFO mapreduce.JobSubmitter: number of splits:10
18 14/03/20 23:50:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1395323769116_0001
19 14/03/20 23:50:08 INFO impl.YarnClientImpl: Submitted application application_1395323769116_0001
20 14/03/20 23:50:08 INFO mapreduce.Job: The url to track the job: http://centos1:8088/proxy/application_1395323769116_0001/
21 14/03/20 23:50:08 INFO mapreduce.Job: Running job: job_1395323769116_0001
22 14/03/20 23:50:18 INFO mapreduce.Job: Job job_1395323769116_0001 running in uber mode : false
23 14/03/20 23:50:18 INFO mapreduce.Job:  map 0% reduce 0%
24 14/03/20 23:52:21 INFO mapreduce.Job:  map 10% reduce 0%
25 14/03/20 23:52:27 INFO mapreduce.Job:  map 20% reduce 0%
26 14/03/20 23:52:32 INFO mapreduce.Job:  map 30% reduce 0%
27 14/03/20 23:52:34 INFO mapreduce.Job:  map 40% reduce 0%
28 14/03/20 23:52:37 INFO mapreduce.Job:  map 50% reduce 0%
29 14/03/20 23:52:41 INFO mapreduce.Job:  map 60% reduce 0%
30 14/03/20 23:52:43 INFO mapreduce.Job:  map 70% reduce 0%
31 14/03/20 23:52:46 INFO mapreduce.Job:  map 80% reduce 0%
32 14/03/20 23:52:48 INFO mapreduce.Job:  map 90% reduce 0%
33 14/03/20 23:52:51 INFO mapreduce.Job:  map 100% reduce 0%
34 14/03/20 23:52:59 INFO mapreduce.Job:  map 100% reduce 100%
35 14/03/20 23:53:02 INFO mapreduce.Job: Job job_1395323769116_0001 completed successfully
36 14/03/20 23:53:02 INFO mapreduce.Job: Counters: 49
37     File System Counters
38         FILE: Number of bytes read=226
39         FILE: Number of bytes written=948145
40         FILE: Number of read operations=0
41         FILE: Number of large read operations=0
42         FILE: Number of write operations=0
43         HDFS: Number of bytes read=2670
44         HDFS: Number of bytes written=215
45         HDFS: Number of read operations=43
46         HDFS: Number of large read operations=0
47         HDFS: Number of write operations=3
48     Job Counters 
49         Launched map tasks=10
50         Launched reduce tasks=1
51         Data-local map tasks=10
52         Total time spent by all maps in occupied slots (ms)=573584
53         Total time spent by all reduces in occupied slots (ms)=20436
54         Total time spent by all map tasks (ms)=286792
55         Total time spent by all reduce tasks (ms)=10218
56         Total vcore-seconds taken by all map tasks=286792
57         Total vcore-seconds taken by all reduce tasks=10218
58         Total megabyte-seconds taken by all map tasks=440512512
59         Total megabyte-seconds taken by all reduce tasks=20926464
60     Map-Reduce Framework
61         Map input records=10
62         Map output records=20
63         Map output bytes=180
64         Map output materialized bytes=280
65         Input split bytes=1490
66         Combine input records=0
67         Combine output records=0
68         Reduce input groups=2
69         Reduce shuffle bytes=280
70         Reduce input records=20
71         Reduce output records=0
72         Spilled Records=40
73         Shuffled Maps =10
74         Failed Shuffles=0
75         Merged Map outputs=10
76         GC time elapsed (ms)=710
77         CPU time spent (ms)=71800
78         Physical memory (bytes) snapshot=6531928064
79         Virtual memory (bytes) snapshot=19145916416
80         Total committed heap usage (bytes)=5696757760
81     Shuffle Errors
82         BAD_ID=0
83         CONNECTION=0
84         IO_ERROR=0
85         WRONG_LENGTH=0
86         WRONG_MAP=0
87         WRONG_REDUCE=0
88     File Input Format Counters 
89         Bytes Read=1180
90     File Output Format Counters 
91         Bytes Written=97
92 Job Finished in 175.556 seconds
93 Estimated value of Pi is 3.20000000000000000000
 

如果运行不起来,那说明 HDFS 的配置有问题啊!

Hive 中执行 count 等语句,可以触发 mapduce 任务:

Hadoop2.3+Hive0.12 集群部署

 

如果运行的时候出现类似于如下的错误:

Error in metadata: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.metastore.HiveMetaStoreClient

说明元数据存储有问题,可能是以下两方面的原因:

(1)HDFS 的元数据存储有问题:

 $HADOOP_HOME/bin/hadoop fs -mkdir       /tmp
 $HADOOP_HOME/bin/hadoop fs -mkdir       /user/hive/warehouse
 $HADOOP_HOME/bin/hadoop fs -chmod g+w   /tmp
 $HADOOP_HOME/bin/hadoop fs -chmod g+w   /user/hive/warehouse

(2)Mysql 的授权有问题:

在 mysql 中执行如下命令,其实就是给 Mysql 中的 Hive 数据库赋权

grant all on db.* to hive@'%' identified by '密码';(使用户可以远程连接 Mysql)
grant all on db.* to hive@'localhost' identified by '密码';(使用户可以本地连接 Mysql)
flush privileges;

具体哪方面的原因,可以查看 hive 的日志。

基于 Hadoop 集群的 Hive 安装 http://www.linuxidc.com/Linux/2013-07/87952.htm

Hive 内表和外表的区别 http://www.linuxidc.com/Linux/2013-07/87313.htm

Hadoop + Hive + Map +reduce 集群安装部署 http://www.linuxidc.com/Linux/2013-07/86959.htm

Hive 本地独立模式安装 http://www.linuxidc.com/Linux/2013-06/86104.htm

Hive 学习之 WordCount 单词统计 http://www.linuxidc.com/Linux/2013-04/82874.htm

0 机器说明

 

IP

Role

192.168.1.106

NameNodeDataNodeNodeManagerResourceManager

192.168.1.107

SecondaryNameNodeNodeManagerDataNode

192.168.1.108

NodeManagerDataNode

192.168.1.106

HiveServer

1 打通无密钥

配置 HDFS,首先就得把机器之间的无密钥配置上。我们这里为了方便,把机器之间的双向无密钥都配置上。

(1)产生 RSA 密钥信息

ssh-keygen -t rsa

一路回车,直到产生一个图形结构,此时便产生了 RSA 的 私钥 id_rsa 和公钥 id_rsa.pub,位于 /home/user/.ssh 目录中。

(2)将所有机器节点的 ssh 证书公钥拷贝至 /home/user/.ssh/authorized_keys 文件中,三个机器都一样。

(3)切换到 root 用户,修改/etc/ssh/sshd_config 文件,配置:

RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile      .ssh/authorized_keys

(4)重启 ssh 服务:service sshd restart

(5)使用 ssh 服务,远程登录:

Hadoop2.3+Hive0.12 集群部署

ssh 配置成功。

————————————– 分割线 ————————————–

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

————————————– 分割线 ————————————–

2 安装 Hadoop2.3

将对应的 hadoop2.3 的 tar 包解压缩到本地之后,主要就是修改配置文件,文件的路径都在 etc/hadoop 中,下面列出几个主要的。

(1)core-site.xml

 
 1 <configuration>
 2     <property>
 3         <name>hadoop.tmp.dir</name>
 4         <value>file:/home/sdc/tmp/hadoop-${user.name}</value>
 5     </property>
 6     <property>
 7         <name>fs.default.name</name>
 8         <value>hdfs://192.168.1.106:9000</value>
 9     </property>
10 </configuration>
 

(2)hdfs-site.xml

 
 1 <configuration>
 2     <property>
 3         <name>dfs.replication</name>
 4         <value>3</value>
 5     </property>
 6     <property>
 7          <name>dfs.namenode.secondary.http-address</name>
 8          <value>192.168.1.107:9001</value>
 9     </property>
10     <property>
11          <name>dfs.namenode.name.dir</name>
12          <value>file:/home/sdc/dfs/name</value>
13     </property>
14     <property>
15          <name>dfs.datanode.data.dir</name>
16          <value>file:/home/sdc/dfs/data</value>
17     </property>
18     <property>
19          <name>dfs.replication</name>
20          <value>3</value>
21     </property>
22     <property>
23          <name>dfs.webhdfs.enabled</name>
24          <value>true</value>
25     </property>
26 </configuration>
 

(3)hadoop-env.sh

主要是将其中的 Java_HOME 赋值:

export JAVA_HOME=/usr/local/jdk1.6.0_27

(4)mapred-site.xml

 
 1 <configuration>
 2     <property>
 3         <!-- 使用 yarn 作为资源分配和任务管理框架 -->
 4         <name>mapreduce.framework.name</name>
 5         <value>yarn</value>
 6     </property>
 7     <property>
 8         <!-- JobHistory Server 地址 -->
 9         <name>mapreduce.jobhistory.address</name>
10         <value>CentOS1:10020</value>
11     </property>
12     <property>
13         <!-- JobHistory WEB 地址 -->
14         <name>mapreduce.jobhistory.webapp.address</name>
15         <value>centos1:19888</value>
16     </property>
17     <property>
18         <!-- 排序文件的时候一次同时最多可并行的个数 -->
19         <name>mapreduce.task.io.sort.factor</name>
20         <value>100</value>
21     </property>
22     <property>
23         <!-- reuduce shuffle 阶段并行传输数据的数量 -->
24         <name>mapreduce.reduce.shuffle.parallelcopies</name>
25         <value>50</value>
26     </property>
27     <property>
28         <name>mapred.system.dir</name>
29         <value>file:/home/sdc/Data/mr/system</value>
30     </property>
31     <property>
32         <name>mapred.local.dir</name>
33         <value>file:/home/sdc/Data/mr/local</value>
34     </property>
35     <property>
36         <!-- 每个 Map Task 需要向 RM 申请的内存量 -->
37         <name>mapreduce.map.memory.mb</name>
38         <value>1536</value>
39     </property>
40     <property>
41         <!-- 每个 Map 阶段申请的 Container 的 JVM 参数 -->
42         <name>mapreduce.map.java.opts</name>
43         <value>-Xmx1024M</value>
44     </property>
45     <property>
46         <!-- 每个 Reduce Task 需要向 RM 申请的内存量 -->
47         <name>mapreduce.reduce.memory.mb</name>
48         <value>2048</value>
49     </property>
50     <property>
51         <!-- 每个 Reduce 阶段申请的 Container 的 JVM 参数 -->
52         <name>mapreduce.reduce.java.opts</name>
53         <value>-Xmx1536M</value>
54     </property>
55     <property>
56         <!-- 排序内存使用限制 -->
57         <name>mapreduce.task.io.sort.mb</name>
58         <value>512</value>
59     </property>
60 </configuration>
 

注意上面的几个内存大小的配置,其中 Container 的大小一般都要小于所能申请的最大值,否则所运行的 Mapreduce 任务可能无法运行。

(5)yarn-site.xml

 
 1 <configuration>
 2     <property>
 3         <name>yarn.nodemanager.aux-services</name>
 4         <value>mapreduce_shuffle</value>
 5     </property>
 6     <property>
 7         <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 8         <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 9     </property>
10     <property>
11         <name>yarn.resourcemanager.address</name>
12         <value>centos1:8080</value>
13     </property>
14     <property>
15         <name>yarn.resourcemanager.scheduler.address</name>
16         <value>centos1:8081</value>
17     </property>
18     <property>        
19         <name>yarn.resourcemanager.resource-tracker.address</name>
20         <value>centos1:8082</value>
21     </property>
22     <property>
23         <!-- 每个 nodemanager 可分配的内存总量 -->
24         <name>yarn.nodemanager.resource.memory-mb</name>
25         <value>2048</value>
26     </property>
27     <property>
28         <name>yarn.nodemanager.remote-app-log-dir</name>
29         <value>${hadoop.tmp.dir}/nodemanager/remote</value>
30     </property>
31     <property>
32         <name>yarn.nodemanager.log-dirs</name>
33         <value>${hadoop.tmp.dir}/nodemanager/logs</value>
34     </property>
35     <property>
36         <name>yarn.resourcemanager.admin.address</name>
37         <value>centos1:8033</value>
38     </property>
39     <property>
40         <name>yarn.resourcemanager.webapp.address</name>
41         <value>centos1:8088</value>
42     </property>
43 </configuration>
 

 

此外,配置好对应的 HADOOP_HOME 环境变量之后,将当前 hadoop 文件发送到所有的节点,在 sbin 目录中有 start-all.sh 脚本,启动可见:

Hadoop2.3+Hive0.12 集群部署

Hadoop2.3+Hive0.12 集群部署

Hadoop2.3+Hive0.12 集群部署

启动完成之后,有如下两个 WEB 界面:

http://192.168.1.106:8088/cluster

Hadoop2.3+Hive0.12 集群部署

 

http://192.168.1.106:50070/dfshealth.html

Hadoop2.3+Hive0.12 集群部署

 

使用最简单的命令检查下 HDFS:

Hadoop2.3+Hive0.12 集群部署

更多详情见请继续阅读下一页的精彩内容:http://www.linuxidc.com/Linux/2014-07/104302p2.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-20发表,共计16210字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7990516
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
星哥带你玩飞牛NAS-8:有了NAS你可以干什么?软件汇总篇

星哥带你玩飞牛NAS-8:有了NAS你可以干什么?软件汇总篇

星哥带你玩飞牛 NAS-8:有了 NAS 你可以干什么?软件汇总篇 前言 哈喽各位玩友!我是是星哥,不少朋友私...
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸

一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸

一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸 前言 作为天天跟架构图、拓扑图死磕的...
你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你 为什么要用宝塔跑分? 宝塔跑分其实就是对 CPU、内存、磁盘、IO 做...
安装Black群晖DSM7.2系统安装教程(在Vmware虚拟机中、实体机均可)!

安装Black群晖DSM7.2系统安装教程(在Vmware虚拟机中、实体机均可)!

安装 Black 群晖 DSM7.2 系统安装教程(在 Vmware 虚拟机中、实体机均可)! 前言 大家好,...
星哥带你玩飞牛NAS-16:不再错过公众号更新,飞牛NAS搭建RSS

星哥带你玩飞牛NAS-16:不再错过公众号更新,飞牛NAS搭建RSS

  星哥带你玩飞牛 NAS-16:不再错过公众号更新,飞牛 NAS 搭建 RSS 对于经常关注多个微...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定! 前言 作为 NAS 玩家,你是否总被这些...
零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face免费服务器+Docker 快速部署HertzBeat 监控平台

零成本上线!用 Hugging Face 免费服务器 +Docker 快速部署 HertzBeat 监控平台 ...
星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛 NAS-14:解锁公网自由!Lucky 功能工具安装使用保姆级教程 作为 NAS 玩家,咱们最...
开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

  开源 MoneyPrinterTurbo 利用 AI 大模型,一键生成高清短视频! 在短视频内容...
告别Notion焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁”

告别Notion焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁”

  告别 Notion 焦虑!这款全平台开源加密笔记神器,让你的隐私真正“上锁” 引言 在数字笔记工...