阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Hadoop完全分布式环境搭建

139次阅读
没有评论

共计 11606 个字符,预计需要花费 30 分钟才能阅读完成。

一. 准备工作
实验环境:Vmware 虚拟出的 3 台主机,系统为 CentOS_6.4_i386
用到的软件:Hadoop-1.2.1-1.i386.rpm,jdk-7u9-linux-i586.rpm
主机规划:
IP 地址                      主机名                    角色
192.168.2.22          master.flyence.tk        NameNode,JobTracker
192.168.2.42          datanode.flyence.tk      DataNode,TaskTracker
192.168.2.32          snn.flyence.tk          SecondaryNameNode

1. hostname 命令修改主机名,并修改 /etc/sysconfig/network 中的主机
这里以 master 节点为例
[root@localhost ~]# hostname master.flyence.tk
[root@localhost ~]# vim /etc/sysconfig/network
[root@localhost ~]# logout

下面为 /etc/sysconfig/network 中的内容
NETWORKING=yes
HOSTNAME=master.flyence.tk

2. 在 /etc/hosts 中,记录 3 台主机的 IP 和主机名

Hadoop 完全分布式环境搭建

3. 在 3 台主机上添加 hadoop 用户,并设定密码

# useradd hadoop
# echo “hadoop” | passwd –stdin hadoop

4. master 节点的 hadoop 用户能够以基于密钥的验证方式登录其他节点,以便启动进程并执行监控等额外的管理工作。
[root@master ~]# su – hadoop
[hadoop@master ~]$ ssh-keygen -t rsa -P ”
[hadoop@master ~]$ ssh-copy-id -i .ssh/id_rsa.pub hadoop@datanode.flyence.tk
[hadoop@master ~]$ ssh-copy-id -i .ssh/id_rsa.pub hadoop@snn.flyence.tk

二. 安装 JDK

3 台主机上都要安装,以下步骤要重复三遍

[root@master ~]# rpm -ivh jdk-7u9-linux-i586.rpm

编辑 /etc/profile.d/Java.sh,在文件中添加如下内容:
export PATH=/usr/java/latest/bin:$PATH

切换至 hadoop 用户,并执行如下命令测试 jdk 环境配置是否就绪
[hadoop@master ~]$ java -version
java version “1.7.0_09”
Java(TM) SE Runtime Environment (build 1.7.0_09-b05)
Java HotSpot(TM) Client VM (build 23.5-b02, mixed mode, sharing)

三. 安装 Hadoop

集群中的每个节点都要安装 Hadoop。
[root@master ~]# rpm -ivh hadoop-1.2.1-1.i386.rpm

切换至 hadoop 用户,验证 Hadoop 是否安装完成
[hadoop@master ~]$ hadoop version
Hadoop 1.2.1
Subversion https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1503152
Compiled by mattf on Mon Jul 22 15:17:22 PDT 2013
From source with checksum 6923c86528809c4e7e6f493b6b413a9a
This command was run using /usr/share/hadoop/hadoop-core-1.2.1.jar

相关阅读

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

搭建 Hadoop 环境(在 Winodws 环境下用虚拟机虚拟两个 Ubuntu 系统进行搭建)http://www.linuxidc.com/Linux/2011-12/48894.htm

四. 配置 Hadoop

3 台主机上的配置均相同,Hadoop 在启动时会根据配置文件判定当前节点的角色,并启动其相应的服务。因此以下的修改在每个节点上都要进行。

1. 修改 /etc/hadoop/core-site.xml, 内容如下
<?xml version=”1.0″?>
<?xml-stylesheet type=”text/xsl” href=”https://www.linuxidc.com/Linux/2014-03/configuration.xsl”?>

<!– Put site-specific property overrides in this file. –>

<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://master.flyence.tk:8020</value>
<final>true</final>
<description>The name of the default file system. A URI whose scheme and authority determine the FileSystem implimentation.</description>
</property>

<property>
<name>hadoop.tmp.dir</name>
<value>/hadoop/temp</value>
<description>A base for other temporary directories.</description>
</property>
</configuration>

注:这里修改 Hadoop 的临时目录,则在 3 个节点上都需新建 /hadoop 文件夹,并赋予 hadoop 用户 rwx 权限,可用 setfacl 语句。

2. 修改 /etc/hadoop/mapred-site.xml
<?xml version=”1.0″?>
<?xml-stylesheet type=”text/xsl” href=”https://www.linuxidc.com/Linux/2014-03/configuration.xsl”?>

<!– Put site-specific property overrides in this file. –>

<configuration>

<property>
<name>mapred.job.tracker</name>
<value>master.flyence.tk:8021</value>
<final>true</final>
<description>The host and port that the MapReduce JobTracker runs at. </description>
</property>

<property>
<name>mapred.child.Java.opts</name>
<value>-Xmx512m</value>
</property>

</configuration>

3. 修改 /etc/hadoop/hdfs-site.xml
<?xml version=”1.0″?>
<?xml-stylesheet type=”text/xsl” href=”https://www.linuxidc.com/Linux/2014-03/configuration.xsl”?>

<!– Put site-specific property overrides in this file. –>

<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>
<description>The actual number of replications can be specified when the file is created.</description></property>

</configuration>

4. 修改 /etc/hadoop/masters
snn.flyence.tk

5. 修改 /etc/hadoop/slaves
datanode.flyence.tk

6. 在 master 上初始化数据节点
[root@master ~]# hadoop namenode -format

五. 启动 Hadoop

1. 首先为执行脚本增加执行权限
[root@master ~]# chmod +x /usr/sbin/start-all.sh
[root@master ~]# chmod +x /usr/sbin/start-dfs.sh
[root@master ~]# chmod +x /usr/sbin/start-mapred.sh
[root@master ~]# chmod +x /usr/sbin/slaves.sh

2. 启动 Hadoop
[hadoop@master ~]$ start-all.sh
starting namenode, logging to /var/log/hadoop/hadoop/hadoop-hadoop-namenode-master.flyence.tk.out
datanode.flyence.tk: starting datanode, logging to /var/log/hadoop/hadoop/hadoop-hadoop-datanode-snn.flyence.tk.out
snn.flyence.tk: starting secondarynamenode, logging to /var/log/hadoop/hadoop/hadoop-hadoop-secondarynamenode-datanode.flyence.tk.out
starting jobtracker, logging to /var/log/hadoop/hadoop/hadoop-hadoop-jobtracker-master.flyence.tk.out
datanode.flyence.tk: starting tasktracker, logging to /var/log/hadoop/hadoop/hadoop-hadoop-tasktracker-snn.flyence.tk.out

注意:很奇怪,用 rpm 格式的 hadoop 包,安装后的执行脚本竟然是在 /usr/sbin 下的,而且没有执行权限。而在启动 Hadoop 时,一般都是用的非系统用户,不明白为什么,用源码包安装的时候,不会有这个问题。

如果要停止 Hadoop 的各进程,则使用 stop-all.sh 脚本即可,当然也要赋予执行权限。

一. 准备工作
实验环境:Vmware 虚拟出的 3 台主机,系统为 CentOS_6.4_i386
用到的软件:Hadoop-1.2.1-1.i386.rpm,jdk-7u9-linux-i586.rpm
主机规划:
IP 地址                      主机名                    角色
192.168.2.22          master.flyence.tk        NameNode,JobTracker
192.168.2.42          datanode.flyence.tk      DataNode,TaskTracker
192.168.2.32          snn.flyence.tk          SecondaryNameNode

1. hostname 命令修改主机名,并修改 /etc/sysconfig/network 中的主机
这里以 master 节点为例
[root@localhost ~]# hostname master.flyence.tk
[root@localhost ~]# vim /etc/sysconfig/network
[root@localhost ~]# logout

下面为 /etc/sysconfig/network 中的内容
NETWORKING=yes
HOSTNAME=master.flyence.tk

2. 在 /etc/hosts 中,记录 3 台主机的 IP 和主机名

Hadoop 完全分布式环境搭建

3. 在 3 台主机上添加 hadoop 用户,并设定密码

# useradd hadoop
# echo “hadoop” | passwd –stdin hadoop

4. master 节点的 hadoop 用户能够以基于密钥的验证方式登录其他节点,以便启动进程并执行监控等额外的管理工作。
[root@master ~]# su – hadoop
[hadoop@master ~]$ ssh-keygen -t rsa -P ”
[hadoop@master ~]$ ssh-copy-id -i .ssh/id_rsa.pub hadoop@datanode.flyence.tk
[hadoop@master ~]$ ssh-copy-id -i .ssh/id_rsa.pub hadoop@snn.flyence.tk

二. 安装 JDK

3 台主机上都要安装,以下步骤要重复三遍

[root@master ~]# rpm -ivh jdk-7u9-linux-i586.rpm

编辑 /etc/profile.d/Java.sh,在文件中添加如下内容:
export PATH=/usr/java/latest/bin:$PATH

切换至 hadoop 用户,并执行如下命令测试 jdk 环境配置是否就绪
[hadoop@master ~]$ java -version
java version “1.7.0_09”
Java(TM) SE Runtime Environment (build 1.7.0_09-b05)
Java HotSpot(TM) Client VM (build 23.5-b02, mixed mode, sharing)

三. 安装 Hadoop

集群中的每个节点都要安装 Hadoop。
[root@master ~]# rpm -ivh hadoop-1.2.1-1.i386.rpm

切换至 hadoop 用户,验证 Hadoop 是否安装完成
[hadoop@master ~]$ hadoop version
Hadoop 1.2.1
Subversion https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1503152
Compiled by mattf on Mon Jul 22 15:17:22 PDT 2013
From source with checksum 6923c86528809c4e7e6f493b6b413a9a
This command was run using /usr/share/hadoop/hadoop-core-1.2.1.jar

相关阅读

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

搭建 Hadoop 环境(在 Winodws 环境下用虚拟机虚拟两个 Ubuntu 系统进行搭建)http://www.linuxidc.com/Linux/2011-12/48894.htm

六. 测试 Hadoop

Hadoop 提供了 MapReduce 编程框架,其并行处理能力的发挥需要通过开发 Map 及 Reduce 程序实现。为了便于系统测试,Hadoop 提供了一个单词统计的应用程序算法样例,其位于 Hadoop 安装目录下名称类似 hadoop-examples-*.jar 的文件中。除了单词统计,这个 jar 文件还包含了分布式运行的 grep 等功能的实现,这可以通过如下命令查看。
注:rpm 包安装后,其算法样例位于 /usr/share/hadoop/hadoop-examples-1.2.1.jar
[hadoop@master ~]$ hadoop jar  /usr/share/hadoop/hadoop-examples-1.2.1.jar
An example program must be given as the first argument.
Valid program names are:
  aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
  aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
  dbcount: An example job that count the pageview counts from a database.
  grep: A map/reduce program that counts the matches of a regex in the input.
  join: A job that effects a join over sorted, equally partitioned datasets
  multifilewc: A job that counts words from several files.
  pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
  pi: A map/reduce program that estimates Pi using monte-carlo method.
  randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
  randomwriter: A map/reduce program that writes 10GB of random data per node.
  secondarysort: An example defining a secondary sort to the reduce.
  sleep: A job that sleeps at each map and reduce task.
  sort: A map/reduce program that sorts the data written by the random writer.
  sudoku: A sudoku solver.
  teragen: Generate data for the terasort
  terasort: Run the terasort
  teravalidate: Checking results of terasort
  wordcount: A map/reduce program that counts the words in the input files.

首先创建 in 文件夹,put 两个文件进去,然后进行测试
[hadoop@master ~]$ hadoop fs -mkdir in
[hadoop@master ~]$ hadoop fs -put /etc/fstab /etc/profile in

测试:
[hadoop@master ~]$ hadoop jar /usr/share/hadoop/hadoop-examples-1.2.1.jar wordcount in out
14/03/06 11:26:42 INFO input.FileInputFormat: Total input paths to process : 2
14/03/06 11:26:42 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/03/06 11:26:42 WARN snappy.LoadSnappy: Snappy native library not loaded
14/03/06 11:26:43 INFO mapred.JobClient: Running job: job_201403061123_0001
14/03/06 11:26:44 INFO mapred.JobClient:  map 0% reduce 0%
14/03/06 11:26:50 INFO mapred.JobClient:  map 100% reduce 0%
14/03/06 11:26:57 INFO mapred.JobClient:  map 100% reduce 33%
14/03/06 11:26:58 INFO mapred.JobClient:  map 100% reduce 100%
14/03/06 11:26:59 INFO mapred.JobClient: Job complete: job_201403061123_0001
14/03/06 11:26:59 INFO mapred.JobClient: Counters: 29
14/03/06 11:26:59 INFO mapred.JobClient:  Job Counters
14/03/06 11:26:59 INFO mapred.JobClient:    Launched reduce tasks=1
14/03/06 11:26:59 INFO mapred.JobClient:    SLOTS_MILLIS_MAPS=7329
14/03/06 11:26:59 INFO mapred.JobClient:    Total time spent by all reduces waiting after reserving slots (ms)=0
14/03/06 11:26:59 INFO mapred.JobClient:    Total time spent by all maps waiting after reserving slots (ms)=0
14/03/06 11:26:59 INFO mapred.JobClient:    Launched map tasks=2
14/03/06 11:26:59 INFO mapred.JobClient:    Data-local map tasks=2
14/03/06 11:26:59 INFO mapred.JobClient:    SLOTS_MILLIS_REDUCES=8587
14/03/06 11:26:59 INFO mapred.JobClient:  File Output Format Counters
14/03/06 11:26:59 INFO mapred.JobClient:    Bytes Written=2076
14/03/06 11:26:59 INFO mapred.JobClient:  FileSystemCounters
14/03/06 11:26:59 INFO mapred.JobClient:    FILE_BYTES_READ=2948
14/03/06 11:26:59 INFO mapred.JobClient:    HDFS_BYTES_READ=3139
14/03/06 11:26:59 INFO mapred.JobClient:    FILE_BYTES_WRITTEN=167810
14/03/06 11:26:59 INFO mapred.JobClient:    HDFS_BYTES_WRITTEN=2076
14/03/06 11:26:59 INFO mapred.JobClient:  File Input Format Counters
14/03/06 11:26:59 INFO mapred.JobClient:    Bytes Read=2901
14/03/06 11:26:59 INFO mapred.JobClient:  Map-Reduce Framework
14/03/06 11:26:59 INFO mapred.JobClient:    Map output materialized bytes=2954
14/03/06 11:26:59 INFO mapred.JobClient:    Map input records=97
14/03/06 11:26:59 INFO mapred.JobClient:    Reduce shuffle bytes=2954
14/03/06 11:26:59 INFO mapred.JobClient:    Spilled Records=426
14/03/06 11:26:59 INFO mapred.JobClient:    Map output bytes=3717
14/03/06 11:26:59 INFO mapred.JobClient:    Total committed heap usage (bytes)=336994304
14/03/06 11:26:59 INFO mapred.JobClient:    CPU time spent (ms)=2090
14/03/06 11:26:59 INFO mapred.JobClient:    Combine input records=360
14/03/06 11:26:59 INFO mapred.JobClient:    SPLIT_RAW_BYTES=238
14/03/06 11:26:59 INFO mapred.JobClient:    Reduce input records=213
14/03/06 11:26:59 INFO mapred.JobClient:    Reduce input groups=210
14/03/06 11:26:59 INFO mapred.JobClient:    Combine output records=213
14/03/06 11:26:59 INFO mapred.JobClient:    Physical memory (bytes) snapshot=331116544
14/03/06 11:26:59 INFO mapred.JobClient:    Reduce output records=210
14/03/06 11:26:59 INFO mapred.JobClient:    Virtual memory (bytes) snapshot=3730141184
14/03/06 11:26:59 INFO mapred.JobClient:    Map output records=360

注:这里 out 文件夹需没有创建

七. 各种错误的总结
1. map 100%,reduce 0%
一般是由于主机名和 IP 地址不对应造成的,仔细检查 3 个节点的 /etc/hosts 文件

2. Error: Java heap space
分配的堆内存不够,在 mapred-site.xml 中,将 mapred.child.java.opts 的值改大,改为 1024 试试看

3. namenode 无法启动
请修改默认的临时目录,在上面的文章中有提到

4. Name node is in safe mode,或者 JobTracker is in safe mode
Namenode 并不会持久存储数据块与其存储位置的对应信息,因为这些信息是在 HDFS 集群启动由 Namenode 根据各 Datanode 发来的信息进行重建而来。这个重建过程被称为 HDFS 的安全模式。
这种情况下只需等待会就好

更多 Ubuntu 相关信息见Ubuntu 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=2

正文完
星哥说事-微信公众号
post-qrcode
 
星锅
版权声明:本站原创文章,由 星锅 2022-01-20发表,共计11606字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中