阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Flume + HDFS + Hive日志收集系统搭建

524次阅读
没有评论

共计 12318 个字符,预计需要花费 31 分钟才能阅读完成。

最近一段时间,负责公司的产品日志埋点与收集工作,搭建了基于 Flume+HDFS+Hive 日志搜集系统。

一、日志搜集系统架构:

简单画了一下日志搜集系统的架构图,可以看出,flume 承担了 agent 与 collector 角色,HDFS 承担了数据持久化存储的角色。

作者搭建的服务器是个 demo 版,只用到了一个 flume_collector,数据只存储在 HDFS。当然高可用的日志搜集处理系统架构是需要多台 flume collector 做负载均衡与容错处理的。

Flume + HDFS + Hive 日志收集系统搭建

 

二、日志产生:

1、log4j 配置,每隔 1 分钟 roll 一个文件,如果 1 分钟之内文件大于 5M,则再生成一个文件。

<!-- 产品数据分析日志 按分钟分 -->
        <RollingRandomAccessFile name="RollingFile_product_minute"
            fileName="${STAT_LOG_HOME}/${SERVER_NAME}_product.log"
            filePattern="${STAT_LOG_HOME}/${SERVER_NAME}_product.log.%d{yyyy-MM-dd-HH-mm}-%i">
            <PatternLayout charset="UTF-8"
                pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} %level - %msg%xEx%n" />
            <Policies>
                <TimeBasedTriggeringPolicy interval="1"
                    modulate="true" />
                <SizeBasedTriggeringPolicy size="${EVERY_FILE_SIZE}" />
            </Policies>
            <Filters>
                <ThresholdFilter level="INFO" onMatch="ACCEPT"
                    onMismatch="NEUTRAL" />
            </Filters>
        </RollingRandomAccessFile> 

roll 后的文件格式如下

Flume + HDFS + Hive 日志收集系统搭建

2、日志内容

json 格式文件,最外层 json 按顺序为:tableName,logRequest,timestamp,statBody,logResponse,resultCode,resultMsg

2016-11-30 09:18:21.916 INFO - {"tableName": "ReportView",

    "logRequest": {***

    },

    "timestamp": 1480468701432,

    "statBody": {***

    },

    "logResponse": {***

    },

    "resultCode": 1,

    "resultFailMsg": ""

} 

三、flume 配置

虚拟机环境,请参考  http://www.linuxidc.com/Linux/2016-12/137955.htm

Hadoop 环境,请参考  http://www.linuxidc.com/Linux/2016-12/137957.htm

此处 flume 环境是

CentOS1:flume-agent

centos2:flume-collector

1、flume agent 配置,conf 文件

a1.sources = linuxidcSource

a1.channels = linuxidcChannel

a1.sinks = linuxidcSink

a1.sources.linuxidcSource.type = spooldir

a1.sources.linuxidcSource.channels = linuxidcChannel

#日志目录

a1.sources.linuxidcSource.spoolDir = /opt/flumeSpool

a1.sources.linuxidcSource.fileHeader = true

#日志内容处理完后,会生成.COMPLETED 后缀的文件,同时.log 文件每一分钟 roll 一个,此处忽略.log 文件与.COMPLETED 文件

a1.sources.linuxidcSource.ignorePattern=([^_]+)|(.*(\.log)$)|(.*(\.COMPLETED)$)

a1.sources.linuxidcSource.basenameHeader=true

a1.sources.linuxidcSource.deserializer.maxLineLength=102400

#自定义拦截器,对 json 格式的源日志进行字段分隔,并添加 timestamp,为后面的 hdfsSink 做处理,拦截器代码见后面

a1.sources.linuxidcSource.interceptors=i1

a1.sources.linuxidcSource.interceptors.i1.type=com.linuxidc.flume_interceptor.HiveLogInterceptor2$Builder

a1.sinks.linuxidcSink.type = avro

a1.sinks.linuxidcSink.channel = linuxidcChannel

a1.sinks.linuxidcSink.hostname = centos2

a1.sinks.linuxidcSink.port = 4545

#此处配置 deflate 压缩后,hive collector 那边一定也要相应配置解压缩

a1.sinks.linuxidcSink.compression-type=deflate

a1.channels.linuxidcChannel.type=memory

a1.channels.linuxidcChannel.capacity=10000

a1.channels.linuxidcChannel.transactionCapacity=1000 

2、flume collector 配置

a1.sources = avroSource

a1.channels = memChannel

a1.sinks = hdfsSink

a1.sources.avroSource.type = avro

a1.sources.avroSource.channels = memChannel

a1.sources.avroSource.bind=centos2

a1.sources.avroSource.port=4545

#与 flume agent 配置对应

a1.sources.avroSource.compression-type=deflate

a1.sinks.hdfsSink.type = hdfs

a1.sinks.hdfsSink.channel = memChannel

# linuxidc_hive_log 为 hive 表,按年 - 月 - 日分区存储,a1.sinks.hdfsSink.hdfs.path=hdfs://centos1:9000/flume/linuxidc_hive_log/dt=%Y-%m-%d

a1.sinks.hdfsSink.hdfs.batchSize=10000

a1.sinks.hdfsSink.hdfs.fileType=DataStream

a1.sinks.hdfsSink.hdfs.writeFormat=Text

a1.sinks.hdfsSink.hdfs.rollSize=10240000

a1.sinks.hdfsSink.hdfs.rollCount=0

a1.sinks.hdfsSink.hdfs.rollInterval=300

a1.channels.memChannel.type=memory

a1.channels.memChannel.capacity=100000

a1.channels.memChannel.transactionCapacity=10000 

四、hive 表创建与分区

1、hive 表创建

在 hive 中执行建表语句后,hdfs://centos1:9000/flume/ 目录下新生成了 linuxidc_hive_log 目录。(建表语句里面有 location 关键字)

\u0001 表示 hive 通过该分隔符进行字段分离,该字符在 linux 用 vim 编辑器打开是 ^A。

由于日志格式是 JSON 格式,因为需要将 JSON 格式转换成 \u0001 字符分隔,并通过 dt 进行分区。这一步通过 flume 自定义拦截器来完成。

CREATE TABLE `linuxidc_hive_log`(

`tableNmae` string,

`logRequest` string,

`timestamp` bigint,

`statBody` string,

`logResponse` string,

`resultCode` int,

`resultFailMsg` string

)

PARTITIONED BY (`dt` string)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\u0001'

STORED AS INPUTFORMAT

'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

'hdfs://centos1:9000/flume/linuxidc_hive_log'

2、hive 表分区

日志 flume sink 到 hdfs 上时,如果没有对 hive 表预先进行分区,会出现日志已经上传到 hdfs 目录,但是 hive 表却无法加载数据的情况。
这是因为 hive 表的分区没有创建。因此要对表进行分区添加,这里对最近一年左右时间进行分区添加
分区脚本 init_flume_hive_table.sh
for ((i=-1;i<=365;i++))
do

        dt=$(date -d "$(date +%F) ${i} days" +%Y-%m-%d)

        echo date=$dt

        hive -e "ALTER TABLE linuxidc_hive_log ADD PARTITION(dt='${dt}')" >> logs/init_linuxidc_hive_log.out 2>>logs/init_linuxidc_hive_log.err

done 

五、自定义 flume 拦截器

新建 maven 工程,拦截器 HiveInterceptor2 代码如下。

package com.linuxidc.flume_interceptor;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import org.apache.flume.Context;

import org.apache.flume.Event;

import org.apache.flume.interceptor.Interceptor;

import org.apache.flume.interceptor.TimestampInterceptor.Constants;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.alibaba.fastjson.JSONObject;

import com.google.common.base.Charsets;

import com.google.common.base.Joiner;

public class HiveLogInterceptor2 implements Interceptor

{private static Logger logger = LoggerFactory.getLogger(HiveLogInterceptor2.class);

    public static final String HIVE_SEPARATOR = "\001";

    public void close()

    {// TODO Auto-generated method stub

    }

    public void initialize()

    {// TODO Auto-generated method stub

    }

    public Event intercept(Event event)

    {String orginalLog = new String(event.getBody(), Charsets.UTF_8);

        try

        {String log = this.parseLog(orginalLog);

            // 设置时间, 用于 hdfsSink

            long now = System.currentTimeMillis();

            Map headers = event.getHeaders();

            headers.put(Constants.TIMESTAMP, Long.toString(now));

            event.setBody(log.getBytes());

        } catch (Throwable throwable)

        {logger.error(("errror when intercept,log [" + orginalLog + "]"), throwable);

            return null;

        }

        return event;

    }

    public List<Event> intercept(List<Event> list)

    {List<Event> events = new ArrayList<Event>();

        for (Event event : list)

        {Event interceptedEvent = this.intercept(event);

            if (interceptedEvent != null)

            {events.add(interceptedEvent);

            }

        }

        return events;

    }

    private static String parseLog(String log)

    {List<String> logFileds = new ArrayList<String>();

        String dt = log.substring(0, 10);

        String keyStr = "INFO -";

        int index = log.indexOf(keyStr);

        String content = "";

        if (index != -1)

        {content = log.substring(index + keyStr.length(), log.length());

        }

        //针对不同 OS,使用不同回车换行符号

        content = content.replaceAll("\r", "");

        content = content.replaceAll("\n", "\\\\" + System.getProperty("line.separator"));

        JSONObject jsonObj = JSONObject.parseObject(content);

        String tableName = jsonObj.getString("tableName");

        String logRequest = jsonObj.getString("logRequest");

        String timestamp = jsonObj.getString("timestamp");

        String statBody = jsonObj.getString("statBody");

        String logResponse = jsonObj.getString("logResponse");

        String resultCode = jsonObj.getString("resultCode");

        String resultFailMsg = jsonObj.getString("resultFailMsg");

        //字段分离

        logFileds.add(tableName);

        logFileds.add(logRequest);

        logFileds.add(timestamp);

        logFileds.add(statBody);

        logFileds.add(logResponse);

        logFileds.add(resultCode);

        logFileds.add(resultFailMsg);

        logFileds.add(dt);

        return Joiner.on(HIVE_SEPARATOR).join(logFileds);

    }

    public static class Builder implements Interceptor.Builder

    {public Interceptor build()

        {return new HiveLogInterceptor2();}

        public void configure(Context arg0)

        {}}

} 

pom.xml 增加如下配置,将 flume 拦截器工程进行 maven 打包,jar 包与依赖包均拷到 ${flume-agent}/lib 目录

<build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-dependency-plugin</artifactId>
                <configuration>
                    <outputDirectory>
                        ${project.build.directory}
                    </outputDirectory>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-dependency-plugin</artifactId>
                <executions>
                    <execution>
                        <id>copy-dependencies</id>
                        <phase>prepare-package</phase>
                        <goals>
                            <goal>copy-dependencies</goal>
                        </goals>
                        <configuration>
                            <outputDirectory>${project.build.directory}/lib</outputDirectory>
                            <overWriteReleases>true</overWriteReleases>
                            <overWriteSnapshots>true</overWriteSnapshots>
                            <overWriteIfNewer>true</overWriteIfNewer>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build> 

对日志用分隔符 ”\001″ 进行分隔,。经拦截器处理后的日志格式如下,^A 即是 ”\001″

ReportView^A{"request":{},"requestBody":{"detailInfos":[],"flag":"","reportId":7092,"pageSize":0,"searchs":[],"orders":[],"pageNum":1}}^A1480468701432^A{"sourceId":22745,"reportId":7092,"projectId":29355,"userId":2532}^A{"responseBody":{"statusCodeValue":200,"httpHeaders":{},"body":{"msg":" 请求成功 ","httpCode":200,"timestamp":1480468701849},"statusCode":"OK"},"response":{}}^A1^A^A2016-11-30

至此,flume+Hdfs+Hive 的配置均已完成。

后续可以通过 mapreduce 或者 HQL 对数据进行分析。

六、启动运行与结果

1、启动 hadoop hdfs

参考前一篇文章:Hadoop 1.2 集群搭建与环境配置  http://www.linuxidc.com/Linux/2016-12/137957.htm

2、启动 flume_collector 和 flume_agent,由于 flume 启动命令参数太多,自己写了一个启动脚本

start-Flume.sh

#!/bin/bash
jps -l|grep org.apache.flume.node.Application|awk '{print $1}'|xargs kill -9 2>&1 >/dev/null
cd "$(dirname "$0")"
cd ..
nohup bin/flume-ng agent --conf conf --conf-file conf/flume-conf.properties --name a1 2>&1 > /dev/null &

3、hdfs 查看数据

可以看到搜集的日志已经上传到 HDFS 上

[root@centos1 bin]# rm -rf FlumeData.1480587273016.tmp 
[root@centos1 bin]# hadoop fs -ls /flume/linuxidc_hive_log/dt=2016-12-01/
Found 3 items
-rw-r--r--   3 root supergroup       5517 2016-12-01 08:12 /flume/linuxidc_hive_log/dt=2016-12-01/FlumeData.1480608753042.tmp
-rw-r--r--   3 root supergroup       5517 2016-12-01 08:40 /flume/linuxidc_hive_log/dt=2016-12-01/FlumeData.1480610453116
-rw-r--r--   3 root supergroup       5517 2016-12-01 08:44 /flume/linuxidc_hive_log/dt=2016-12-01/FlumeData.1480610453117
[root@centos1 bin]#  

4、启动 hive,查看数据,可以看到 hive 已经可以加载 hdfs 数据

[root@centos1 lib]# hive

Logging initialized using configuration in file:/root/apache-hive-1.2.1-bin/conf/hive-log4j.properties
hive> select * from linuxidc_hive_log limit 2;
OK
ReportView    {"request":{},"requestBody":{"detailInfos":[],"flag":"","reportId":7092,"pageSize":0,"searchs":[],"orders":[],"pageNum":1}}    1480468701432    {"sourceId":22745,"reportId":7092,"projectId":29355,"userId":2532}    {"responseBody":{"statusCodeValue":200,"httpHeaders":{},"body":{"msg":"请求成功","httpCode":200,"timestamp":1480468701849},"statusCode":"OK"},"response":{}}    1        2016-12-01
ReportDesignResult    {"request":{},"requestBody":{"sourceId":22745,"detailInfos":[{"colName":"月份 ","flag":"0","reportId":7092,"colCode":"col_2_22745","pageSize":20,"type":"1","pageNum":1,"rcolCode":"col_25538","colType":"string","formula":"","id":25538,"position":"row","colId":181664,"dorder":1,"pColName":" 月份 ","pRcolCode":"col_25538"},{"colName":" 综合利率 (合计)","flag":"1","reportId":7092,"colCode":"col_11_22745","pageSize":20,"type":"1","pageNum":1,"rcolCode":"sum_col_25539","colType":"number","formula":"sum","id":25539,"position":"group","colId":181673,"dorder":1,"pColName":" 综合利率 ","pRcolCode":"col_25539"}],"flag":"bar1","reportId":7092,"reportName":"iiiissszzzV","pageSize":100,"searchs":[],"orders":[],"pageNum":1,"projectId":29355}}    1480468703586{"reportType":"bar1","sourceId":22745,"reportId":7092,"num":5,"usedFields":" 月份 $$ 综合利率 (合计)$$","projectId":29355,"userId":2532}    {"responseBody":{"statusCodeValue":200,"httpHeaders":{},"body":{"msg":" 请求成功","reportId":7092,"httpCode":200,"timestamp":1480468703774},"statusCode":"OK"},"response":{}}    1        2016-12-01
Time taken: 2.212 seconds, Fetched: 2 row(s)
hive>

七、常见问题与处理方法

1、FATAL: Spool Directory source linuxidcSource: {spoolDir: /opt/flumeSpool}: Uncaught exception in SpoolDirectorySource thread. Restart or reconfigure Flume to continue processing.

java.nio.charset.MalformedInputException: Input length = 1

可能原因:

1、字符编码问题,spoolDir 目录下的日志文件必须是 UTF-8

2、使用 Spooling Directory Source 的时候,一定要避免同时读写一个文件的情况,conf 文件增加如下配置

a1.sources.linuxidcSource.ignorePattern=([^_]+)|(.*(\.log)$)|(.*(\.COMPLETED)$)

2、日志导入到 hadoop 目录,但是 hive 表查询无数据。如 hdfs://centos1:9000/flume/linuxidc_hive_log/dt=2016-12-01/ 下面有数据,

hive 查询 select * from linuxidc_hive_log 却无数据

可能原因:

1、建表的时候,没有建立分区。即使 flume 进行了配置(a1.sinks.hdfsSink.hdfs.path=hdfs://centos1:9000/flume/linuxidc_hive_log/dt=%Y-%m-%d),但是表的分区结构没有建立,因此文件导入到 HDFS 上后,HIVE 并不能读取。

解决方法:先创建分区,建立 shell 可执行文件,将该表的分区先建好

for ((i=-10;i<=365;i++))
do

        dt=$(date -d "$(date +%F) ${i} days" +%Y-%m-%d)

        echo date=$dt

        hive -e "ALTER TABLE linuxidc_hive_log ADD PARTITION(dt='${dt}')" >> logs/init_linuxidc_hive_log.out 2>>logs/init_linuxidc_hive_log.err

done

2、也可能是文件在 hdfs 上还是.tmp 文件,仍然被 hdfs 在写入。.tmp 文件 hive 暂时无法读取,只能读取非.tmp 文件。

解决方法:等待 hdfs 配置的 roll 间隔时间,或者达到一定大小后 tmp 文件重命名为 hdfs 上的日志文件后,再查询 hive,即可查到。

Hadoop 如何修改 HDFS 文件存储块大小  http://www.linuxidc.com/Linux/2013-09/90100.htm

将本地文件拷到 HDFS 中 http://www.linuxidc.com/Linux/2013-05/83866.htm

从 HDFS 下载文件到本地 http://www.linuxidc.com/Linux/2012-11/74214.htm

将本地文件上传至 HDFS http://www.linuxidc.com/Linux/2012-11/74213.htm

HDFS 基本文件常用命令 http://www.linuxidc.com/Linux/2013-09/89658.htm

Hadoop 中 HDFS 和 MapReduce 节点基本简介 http://www.linuxidc.com/Linux/2013-09/89653.htm

《Hadoop 实战》中文版 + 英文文字版 + 源码【PDF】http://www.linuxidc.com/Linux/2012-10/71901.htm

Hadoop: The Definitive Guide【PDF 版】http://www.linuxidc.com/Linux/2012-01/51182.htm

更多 Hadoop 相关信息见Hadoop 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=13

本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-12/137959.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计12318字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7995744
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择

星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择

星哥带你玩飞牛 NAS-12:开源笔记的进化之路,效率玩家的新选择 前言 如何高效管理知识与笔记,已经成为技术...
免费领取huggingface的2核16G云服务器,超简单教程

免费领取huggingface的2核16G云服务器,超简单教程

免费领取 huggingface 的 2 核 16G 云服务器,超简单教程 前言 HuggingFace.co...
星哥带你玩飞牛NAS-4:飞牛NAS安装istore旁路由,家庭网络升级的最佳实践

星哥带你玩飞牛NAS-4:飞牛NAS安装istore旁路由,家庭网络升级的最佳实践

星哥带你玩飞牛 NAS-4:飞牛 NAS 安装 istore 旁路由,家庭网络升级的最佳实践 开始 大家好我是...
每年0.99刀,拿下你的第一个顶级域名,详细注册使用

每年0.99刀,拿下你的第一个顶级域名,详细注册使用

每年 0.99 刀,拿下你的第一个顶级域名,详细注册使用 前言 作为长期折腾云服务、域名建站的老玩家,星哥一直...
飞牛NAS玩转Frpc并且配置,随时随地直连你的私有云

飞牛NAS玩转Frpc并且配置,随时随地直连你的私有云

飞牛 NAS 玩转 Frpc 并且配置,随时随地直连你的私有云 大家好,我是星哥,最近在玩飞牛 NAS。 在数...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
恶意团伙利用 PHP-FPM 未授权访问漏洞发起大规模攻击

恶意团伙利用 PHP-FPM 未授权访问漏洞发起大规模攻击

恶意团伙利用 PHP-FPM 未授权访问漏洞发起大规模攻击 PHP-FPM(FastCGl Process M...
让微信公众号成为 AI 智能体:从内容沉淀到智能问答的一次升级

让微信公众号成为 AI 智能体:从内容沉淀到智能问答的一次升级

让微信公众号成为 AI 智能体:从内容沉淀到智能问答的一次升级 大家好,我是星哥,之前写了一篇文章 自己手撸一...
你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你 为什么要用宝塔跑分? 宝塔跑分其实就是对 CPU、内存、磁盘、IO 做...
星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择

星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择

星哥带你玩飞牛 NAS-12:开源笔记的进化之路,效率玩家的新选择 前言 如何高效管理知识与笔记,已经成为技术...
150元打造低成本NAS小钢炮,捡一块3865U工控板

150元打造低成本NAS小钢炮,捡一块3865U工控板

150 元打造低成本 NAS 小钢炮,捡一块 3865U 工控板 一块二手的熊猫 B3 工控板 3865U,搭...