阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

基于计算机资源分析Hadoop的默认counter

373次阅读
没有评论

共计 4571 个字符,预计需要花费 12 分钟才能阅读完成。

前言

由于项目中,需要统计每个业务组使用的计算机资源,如 cpu,内存,io 读写,网络流量。所以需要阅读源码查看 Hadoop 的默认 counter。

MapReduce Counter 可以观察 MapReduce job 运行期的一些细节数据,Counter 有 ” 组 group” 的概念,用于表示逻辑上相同范围的所有数值。

cpu

如何衡量 mapreduce 的任务的计算量呢,如果按照任务的运行时间,有些任务的大部分时间可能卡在最后一个 reduce,或者运行期间有资源抢占问题,造成运行时间较高。如果按照任务的 map 数和 reduce 数,也是不准确的,因为有些 map 和 reduce 处理的数据量很少,运行时间很短。

hadoop 任务的运行使用的 cpu 时间,才是衡量任务的计算量,hadoop 提供的 counter:”Map-Reduce Framework:CPU time spent (ms)”, 就是任务运行耗费的 cpu 时间,这个 cpu 时间是如何统计出来的,是 hadoop 在运行期间,每个 task会从/proc/<pid>/stat 读取对应进程的用户 cpu 时间和内核 cpu 时间,他们的和就是 cpu 时间。

附:task 获取 cpu 时间的源码:org.apache.hadoop.mapred.Task.updateResourceCounters–> org.apache.hadoop.util.LinuxResourceCalculatorPlugin.getProcResourceValues(获取 cpu 和内存资源)–> org.apache.hadoop.util.ProcfsBasedProcessTree.getProcessTree.

 

内存

hadoop 默认 counter,获取内存信息,有以下参数:

Map-Reduce Framework:Physical memory (bytes) snapshot” 每个 task 会从 /proc/<pid>/stat 读取对应进程的内存快照,这个是进程的当前物理内存使用大小。

“Map-Reduce Framework:Virtual memory (bytes) snapshot” 每个 task 会从 /proc/<pid>/stat 读取对应进程的虚拟内存快照,这个是进程的当前虚拟内存使用大小。

“Map-Reduce Framework:Total committed heap usage (bytes)” 每个 task 的 jvm 调用 Runtime.getRuntime().totalMemory()获取 jvm 的当前堆大小。

附:task 获取内存的源码:org.apache.hadoop.mapred.Task.updateResourceCounters

 

io 读写

hadoop 读写文件,都是使用 org.apache.hadoop.fs.FileSystem.open 一个文件,如果是 hdfs 文件,就有 hdfs:// 开头的文件 url,如果是本地文件,就是 file:// 开头的文件 url。所以每个 task 的文件读写情况,都可以从 FileSystem.getAllStatistics()获取,而 hadoop 使用FileSystemCounters 记录了 FileSystem 的一切 io 读写大小,FileSystemCounters 分析如下:

“FileSystemCounters:HDFS_BYTES_READjob 执行过程中,只有 map 端运行时,才从 HDFS 读取数据,这些数据不限于源文件内容,还包括所有 map 的 split 元数据。所以这个值应该比 FileInputFormatCounters.BYTES_READ 要略大些。

“FileSystemCounters:HDFS_BYTES_WRITTEN” job 执行过程中,累计写入 HDFS 的数据大小,reduce 在执行完毕后,会写入到 HDFS(存在只有 map,没有 reduce 的情况,该情况是 map 执行完毕把结果写入到 HDFS)。

“FileSystemCounters:FILE_BYTES_READ” 累计读取本地磁盘的文件数据大小,map 和 reduce 端有排序,排序时需要读写本地文件。

“FileSystemCounters:FILE_BYTES_WRITTEN” 累计写入本地磁盘的文件数据大小,map 和 reduce 端有排序,排序时需要读写本地文件,还有 reduce 做 shuffle 时,需要从 map 端拉取数据,也存在写入本地磁盘文件的情况。

附:FileSystemCounters 相关代码:org.apache.hadoop.mapred.Task.updateResourceCounters–> org.apache.hadoop.mapred.Task.FileSystemStatisticUpdater.updateCounters

 

FileSystemCounters 的 counter 对于 io 读写的数据,已经很齐全,但是 hadoop 还有一些细微的 io 读写的 counter:

File Input Format Counters:Bytes Read” job 执行过程中,Map 端从 HDFS 读取的输入的 split 的源文件内容大小,但是不包括 map 的 split 元数据,所以这个值和 ”FileSystemCounters:HDFS_BYTES_READ” 略小,但是很接近。如果 map 输入的源文件是压缩文件,它的值只是压缩文件解压前的大小 ( 附:代码位于 org.apache.hadoop.mapred.MapTask.TrackedRecordReader.fileInputByteCounter)。

Map-Reduce Framework:Map input bytes” job 执行过程中,Map 端从 HDFS 读取的输入的 split 的源文件内容大小, 如果源文件是压缩文件,它的值是压缩文件解压后的大小 ( 附:代码位于 org.apache.hadoop.mapred.MapTask.TrackedRecordReader.inputByteCounter)。

“File Output Format Counters:Bytes Written” job 执行过程中, 会分为 map 和 reduce,但是也可能存在只有 map 的情况,但是 job 执行完毕后,一般都要把结果写入到 hdfs,该值是结果文件的大小,如果是压缩文件,它的值只是压缩文件解压前的大小 ( 附:代码位于 org.apache.hadoop.mapred.MapTask.DirectMapOutputCollector.fileOutputByteCounter 和 org.apache.hadoop.mapred.ReduceTask.NewTrackingRecordWriter.fileOutputByteCounter)。

但是这些细微的 counter,没有统计 map 和 reduce 排序时文件读写的情况,所以要衡量 job 任务的 io 读写情况,我觉得最合适的还是使用 FileSystemCounters 的 counter。

 

io 读写流量大致可以通过上述 FileSystemCounters 四个参数求和而得,存在不足就是:

“FileSystemCounters:HDFS_BYTES_WRITTEN”,它只是一个副本的 hdfs 的写入大小,而 hdfs 的块副本是可以调整的,所以 io 读写流量,还需要 ”FileSystemCounters:HDFS_BYTES_WRITTEN” * 副本数。

map 和 reduce 都是用户自定义的,存在可能是用户代码绕过 hadoop 框架,不使用 org.apache.hadoop.fs.FileSystem.open 文件,这部分 io 读写流量,是无法被统计的。

 

网络流量

hadoop 任务产生网络流量的阶段:map 输入从 hdfs 拉取数据,reduce shuffle 时从 map 端拉取数据,reduce 完成往 hdfs 写入结果(如果没有 reduce,就是 map 完成往 hdfs 写入结果)。

job 和 hdfs 交互产生的流量,可以通过 io 读写分析的两个 counter 获取:”FileSystemCounters:HDFS_BYTES_READ” 和 ”FileSystemCounters:HDFS_BYTES_WRITTEN”

而 reduce shuffle 时从 map 端拉取数据产生的流量,对应的 counter 是:

Map-Reduce Framework:Reduce shuffle bytes” 它是 reduce 往 map 拉取中间结果的累计数据大小,如果 map 产生的中间结果是压缩文件,它的值是压缩文件解压前的大小(附:代码位于 org.apache.hadoop.mapred.ReduceTask.reduceShuffleBytes)。

 

网络流量大致可以通过上述三个参数求和而得,存在不足就是:

“FileSystemCounters:HDFS_BYTES_READ” 和 ”FileSystemCounters:HDFS_BYTES_WRITTEN”,它没有考虑 hadoop 对 hdfs 的本地化优化,hdfs 读写块时,如果发现客户端和目标块在同一个节点,会直接通过本地读写,有些块如果在本地,hadoop 会直接通过本地文件系统读写,不通过网络读写。

“FileSystemCounters:HDFS_BYTES_WRITTEN”,它只是一个副本的 hdfs 的写入大小,而 hdfs 的块副本是可以调整的,所以网络流量,还需要 ”FileSystemCounters:HDFS_BYTES_WRITTEN” * 副本数。

map 和 reduce 都是用户自定义的,存在可能是用户代码绕过 hadoop 框架,自行产生网络通信,这部分流量是无法被统计。

————————————– 分割线 ————————————–

Ubuntu 13.04 上搭建 Hadoop 环境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1 版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu 上搭建 Hadoop 环境(单机模式 + 伪分布模式)http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu 下 Hadoop 环境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

单机版搭建 Hadoop 环境图文教程详解 http://www.linuxidc.com/Linux/2012-02/53927.htm

————————————– 分割线 ————————————–

更多 Hadoop 相关信息见Hadoop 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=13

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-20发表,共计4571字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7995096
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
从“纸堆”到“电子化”文档:用这个开源系统打造你的智能文档管理系统

从“纸堆”到“电子化”文档:用这个开源系统打造你的智能文档管理系统

从“纸堆”到“电子化”文档:用这个开源系统打造你的智能文档管理系统 大家好,我是星哥。公司的项目文档存了一堆 ...
2025年11月28日-Cloudflare史诗级事故:一次配置失误,引爆全球宕机

2025年11月28日-Cloudflare史诗级事故:一次配置失误,引爆全球宕机

2025 年 11 月 28 日 -Cloudflare 史诗级事故: 一次配置失误,引爆全球宕机 前言 继今...
星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛 NAS-14:解锁公网自由!Lucky 功能工具安装使用保姆级教程 作为 NAS 玩家,咱们最...
终于收到了以女儿为原型打印的3D玩偶了

终于收到了以女儿为原型打印的3D玩偶了

终于收到了以女儿为原型打印的 3D 玩偶了 前些日子参加某网站活动,获得一次实物 3D 打印的机会,于是从众多...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
150元打造低成本NAS小钢炮,捡一块3865U工控板

150元打造低成本NAS小钢炮,捡一块3865U工控板

150 元打造低成本 NAS 小钢炮,捡一块 3865U 工控板 一块二手的熊猫 B3 工控板 3865U,搭...
安装Black群晖DSM7.2系统安装教程(在Vmware虚拟机中、实体机均可)!

安装Black群晖DSM7.2系统安装教程(在Vmware虚拟机中、实体机均可)!

安装 Black 群晖 DSM7.2 系统安装教程(在 Vmware 虚拟机中、实体机均可)! 前言 大家好,...
手把手教你,购买云服务器并且安装宝塔面板

手把手教你,购买云服务器并且安装宝塔面板

手把手教你,购买云服务器并且安装宝塔面板 前言 大家好,我是星哥。星哥发现很多新手刚接触服务器时,都会被“选购...
星哥带你玩飞牛NAS硬件 01:捡垃圾的最爱双盘,暴风二期矿渣为何成不老神话?

星哥带你玩飞牛NAS硬件 01:捡垃圾的最爱双盘,暴风二期矿渣为何成不老神话?

星哥带你玩飞牛 NAS 硬件 01:捡垃圾的最爱双盘,暴风二期矿渣为何成不老神话? 前言 在选择 NAS 用预...
星哥带你玩飞牛NAS-16:飞牛云NAS换桌面,fndesk图标管理神器上线!

星哥带你玩飞牛NAS-16:飞牛云NAS换桌面,fndesk图标管理神器上线!

  星哥带你玩飞牛 NAS-16:飞牛云 NAS 换桌面,fndesk 图标管理神器上线! 引言 哈...