阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Spark学习笔记-安装部署与运行实例

418次阅读
没有评论

共计 7990 个字符,预计需要花费 20 分钟才能阅读完成。

首先解压 scala,本次选用版本 scala-2.11.1

[Hadoop@CentOS software]$ tar -xzvf scala-2.11.1.tgz

[hadoop@centos software]$ su –

[root@centos ~]# vi /etc/profile

添加如下内容

SCALA_HOME=/home/hadoop/software/scala-2.11.1

PATH=$SCALA_HOME/bin

EXPORT SCALA_HOME

[root@centos ~]# source /etc/profile

[root@centos ~]# scala -version

Scala code runner version 2.11.1 — Copyright 2002-2013, LAMP/EPFL

然后解压 spark,本次选用版本 spark-1.0.0-bin-hadoop1.tgz,这次用的是 hadoop 1.0.4

[hadoop@centos software]$ tar -xzvf spark-1.0.0-bin-hadoop1.tgz

————————————– 分割线 ————————————–

CentOS 6.2(64 位) 下安装 Spark0.8.0 详细记录 http://www.linuxidc.com/Linux/2014-06/102583.htm

Spark 简介及其在 Ubuntu 下的安装使用 http://www.linuxidc.com/Linux/2013-08/88606.htm

安装 Spark 集群 (在 CentOS 上) http://www.linuxidc.com/Linux/2013-08/88599.htm

Hadoop vs Spark 性能对比 http://www.linuxidc.com/Linux/2013-08/88597.htm

Spark 安装与学习 http://www.linuxidc.com/Linux/2013-08/88596.htm

Spark 并行计算模型 http://www.linuxidc.com/Linux/2012-12/76490.htm

————————————– 分割线 ————————————–

进入到 spark 的 conf 目录下

[hadoop@centos conf]$ cp spark-env.sh.template spark-env.sh

[hadoop@centos conf]$ vi spark-env.sh

添加如下内容

export SCALA_HOME=/home/hadoop/software/scala-2.11.1

export SPARK_MASTER_IP=centos.host1

export SPARK_WORKER_MEMORY=5G

export Java_HOME=/usr/software/jdk

启动

[hadoop@centos spark-1.0.0-bin-hadoop1]$ sbin/start-master.sh

可以通过 http://centos.host1:8080/ 看到对应界面

[hadoop@centos spark-1.0.0-bin-hadoop1]$ sbin/start-slaves.sh park://centos.host1:7077

可以通过 http://centos.host1:8081/ 看到对应界面

下面在 spark 上运行第一个例子:与 Hadoop 交互的 WordCount

首先将 word.txt 文件上传到 HDFS 上,这里路径是 hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt

进入交互模式

[hadoop@centos spark-1.0.0-bin-hadoop1]$ master=spark://centos.host1:7077 ./bin/spark-shell

scala>val file=sc.textFile(“hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt”)

scala>val count=file.flatMap(line=>line.split(” “)).map(word=>(word,1)).reduceByKey(_+_)

scala>count.collect()

可以看到控制台有如下结果:

res0: Array[(String, Int)] = Array((hive,2), (zookeeper,1), (pig,1), (spark,1), (hadoop,4), (hbase,2))

同时也可以将结果保存到 HDFS 上

scala>count.saveAsTextFile(“hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/result.txt”)

接下来再来看下如何运行 Java 版本的 WordCount

这里需要用到一个 jar 文件:spark-assembly-1.0.0-hadoop1.0.4.jar

WordCount 代码如下

public class WordCount {
 
 private static final Pattern SPACE = Pattern.compile(” “);

 @SuppressWarnings(“serial”)
 public static void main(String[] args) throws Exception {
  if (args.length < 1) {
   System.err.println(“Usage: JavaWordCount <file>”);
   System.exit(1);
  }

  SparkConf sparkConf = new SparkConf().setAppName(“JavaWordCount”);
  JavaSparkContext ctx = new JavaSparkContext(sparkConf);
  JavaRDD<String> lines = ctx.textFile(args[0], 1);

  JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
     @Override
     public Iterable<String> call(String s) {
      return Arrays.asList(SPACE.split(s));
     }
    });

  JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
     @Override
     public Tuple2<String, Integer> call(String s) {
      return new Tuple2<String, Integer>(s, 1);
     }
    });

  JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
     @Override
     public Integer call(Integer i1, Integer i2) {
      return i1 + i2;
     }
    });

  List<Tuple2<String, Integer>> output = counts.collect();
  for (Tuple2<?, ?> tuple : output) {
   System.out.println(tuple._1() + ” : ” + tuple._2());
  }
 
  ctx.stop();
 }
}

更多详情见请继续阅读下一页的精彩内容 :http://www.linuxidc.com/Linux/2014-06/103210p2.htm

导出类文件生成 jar 包,这里生成为 mining.jar。然后执行下面命令,其中 –class 指定主类,–master 指定 spark master 地址,后面是执行的 jar 和需要的参数。

[Hadoop@CentOS spark-1.0.0-bin-hadoop1]$ bin/spark-submit –class org.project.modules.spark.Java.WordCount –master spark://centos.host1:7077 /home/hadoop/project/mining.jar hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt

可以看到控制台有如下结果:

spark : 1

hive : 2

hadoop : 4

zookeeper : 1

pig : 1

hbase : 2

最后再来看下如何运行 Python 版本的 WordCount

WordCount 代码如下:

import sys
from operator import add

from pyspark import SparkContext

if __name__ == “__main__”:
    if len(sys.argv) != 2:
        print >> sys.stderr, “Usage: wordcount <file>”
        exit(-1)
    sc = SparkContext(appName=”PythonWordCount”)
    lines = sc.textFile(sys.argv[1], 1)
    counts = lines.flatMap(lambda x: x.split(‘ ‘)) \
                  .map(lambda x: (x, 1)) \
                  .reduceByKey(add)
    output = counts.collect()
    for (word, count) in output:
        print “%s: %i” % (word, count)

输入文件路径可以是本地也可以是 HDFS 上文件,命令如下:

[hadoop@centos spark-1.0.0-bin-hadoop1]$ bin/spark-submit –master spark://centos.host1:7077 /home/hadoop/project/WordCount.py /home/hadoop/temp/word.txt

[hadoop@centos spark-1.0.0-bin-hadoop1]$ bin/spark-submit –master spark://centos.host1:7077 /home/hadoop/project/WordCount.py hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt

可以看到控制台有如下结果:

spark: 1

hbase: 2

hive: 2

zookeeper: 1

hadoop: 4

pig: 1

首先解压 scala,本次选用版本 scala-2.11.1

[Hadoop@CentOS software]$ tar -xzvf scala-2.11.1.tgz

[hadoop@centos software]$ su –

[root@centos ~]# vi /etc/profile

添加如下内容

SCALA_HOME=/home/hadoop/software/scala-2.11.1

PATH=$SCALA_HOME/bin

EXPORT SCALA_HOME

[root@centos ~]# source /etc/profile

[root@centos ~]# scala -version

Scala code runner version 2.11.1 — Copyright 2002-2013, LAMP/EPFL

然后解压 spark,本次选用版本 spark-1.0.0-bin-hadoop1.tgz,这次用的是 hadoop 1.0.4

[hadoop@centos software]$ tar -xzvf spark-1.0.0-bin-hadoop1.tgz

————————————– 分割线 ————————————–

CentOS 6.2(64 位) 下安装 Spark0.8.0 详细记录 http://www.linuxidc.com/Linux/2014-06/102583.htm

Spark 简介及其在 Ubuntu 下的安装使用 http://www.linuxidc.com/Linux/2013-08/88606.htm

安装 Spark 集群 (在 CentOS 上) http://www.linuxidc.com/Linux/2013-08/88599.htm

Hadoop vs Spark 性能对比 http://www.linuxidc.com/Linux/2013-08/88597.htm

Spark 安装与学习 http://www.linuxidc.com/Linux/2013-08/88596.htm

Spark 并行计算模型 http://www.linuxidc.com/Linux/2012-12/76490.htm

————————————– 分割线 ————————————–

进入到 spark 的 conf 目录下

[hadoop@centos conf]$ cp spark-env.sh.template spark-env.sh

[hadoop@centos conf]$ vi spark-env.sh

添加如下内容

export SCALA_HOME=/home/hadoop/software/scala-2.11.1

export SPARK_MASTER_IP=centos.host1

export SPARK_WORKER_MEMORY=5G

export Java_HOME=/usr/software/jdk

启动

[hadoop@centos spark-1.0.0-bin-hadoop1]$ sbin/start-master.sh

可以通过 http://centos.host1:8080/ 看到对应界面

[hadoop@centos spark-1.0.0-bin-hadoop1]$ sbin/start-slaves.sh park://centos.host1:7077

可以通过 http://centos.host1:8081/ 看到对应界面

下面在 spark 上运行第一个例子:与 Hadoop 交互的 WordCount

首先将 word.txt 文件上传到 HDFS 上,这里路径是 hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt

进入交互模式

[hadoop@centos spark-1.0.0-bin-hadoop1]$ master=spark://centos.host1:7077 ./bin/spark-shell

scala>val file=sc.textFile(“hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/word.txt”)

scala>val count=file.flatMap(line=>line.split(” “)).map(word=>(word,1)).reduceByKey(_+_)

scala>count.collect()

可以看到控制台有如下结果:

res0: Array[(String, Int)] = Array((hive,2), (zookeeper,1), (pig,1), (spark,1), (hadoop,4), (hbase,2))

同时也可以将结果保存到 HDFS 上

scala>count.saveAsTextFile(“hdfs://centos.host1:9000/user/hadoop/data/wordcount/001/result.txt”)

接下来再来看下如何运行 Java 版本的 WordCount

这里需要用到一个 jar 文件:spark-assembly-1.0.0-hadoop1.0.4.jar

WordCount 代码如下

public class WordCount {
 
 private static final Pattern SPACE = Pattern.compile(” “);

 @SuppressWarnings(“serial”)
 public static void main(String[] args) throws Exception {
  if (args.length < 1) {
   System.err.println(“Usage: JavaWordCount <file>”);
   System.exit(1);
  }

  SparkConf sparkConf = new SparkConf().setAppName(“JavaWordCount”);
  JavaSparkContext ctx = new JavaSparkContext(sparkConf);
  JavaRDD<String> lines = ctx.textFile(args[0], 1);

  JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
     @Override
     public Iterable<String> call(String s) {
      return Arrays.asList(SPACE.split(s));
     }
    });

  JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
     @Override
     public Tuple2<String, Integer> call(String s) {
      return new Tuple2<String, Integer>(s, 1);
     }
    });

  JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
     @Override
     public Integer call(Integer i1, Integer i2) {
      return i1 + i2;
     }
    });

  List<Tuple2<String, Integer>> output = counts.collect();
  for (Tuple2<?, ?> tuple : output) {
   System.out.println(tuple._1() + ” : ” + tuple._2());
  }
 
  ctx.stop();
 }
}

更多详情见请继续阅读下一页的精彩内容 :http://www.linuxidc.com/Linux/2014-06/103210p2.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-20发表,共计7990字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7983013
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

  开源 MoneyPrinterTurbo 利用 AI 大模型,一键生成高清短视频! 在短视频内容...
免费无广告!这款跨平台AI RSS阅读器,拯救你的信息焦虑

免费无广告!这款跨平台AI RSS阅读器,拯救你的信息焦虑

  免费无广告!这款跨平台 AI RSS 阅读器,拯救你的信息焦虑 在算法推荐主导信息流的时代,我们...
星哥带你玩飞牛NAS-2:飞牛配置RAID磁盘阵列

星哥带你玩飞牛NAS-2:飞牛配置RAID磁盘阵列

星哥带你玩飞牛 NAS-2:飞牛配置 RAID 磁盘阵列 前言 大家好,我是星哥之前星哥写了《星哥带你玩飞牛 ...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
星哥带你玩飞牛NAS-4:飞牛NAS安装istore旁路由,家庭网络升级的最佳实践

星哥带你玩飞牛NAS-4:飞牛NAS安装istore旁路由,家庭网络升级的最佳实践

星哥带你玩飞牛 NAS-4:飞牛 NAS 安装 istore 旁路由,家庭网络升级的最佳实践 开始 大家好我是...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
仅2MB大小!开源硬件监控工具:Win11 无缝适配,CPU、GPU、网速全维度掌控

仅2MB大小!开源硬件监控工具:Win11 无缝适配,CPU、GPU、网速全维度掌控

还在忍受动辄数百兆的“全家桶”监控软件?后台偷占资源、界面杂乱冗余,想查个 CPU 温度都要层层点选? 今天给...
每天一个好玩的网站-手机博物馆-CHAZ 3D Experience

每天一个好玩的网站-手机博物馆-CHAZ 3D Experience

每天一个好玩的网站 - 手机博物馆 -CHAZ 3D Experience 一句话介绍:一个用 3D 方式重温...
150元打造低成本NAS小钢炮,捡一块3865U工控板

150元打造低成本NAS小钢炮,捡一块3865U工控板

150 元打造低成本 NAS 小钢炮,捡一块 3865U 工控板 一块二手的熊猫 B3 工控板 3865U,搭...
多服务器管理神器 Nexterm 横空出世!NAS/Win/Linux 通吃,SSH/VNC/RDP 一站式搞定

多服务器管理神器 Nexterm 横空出世!NAS/Win/Linux 通吃,SSH/VNC/RDP 一站式搞定

多服务器管理神器 Nexterm 横空出世!NAS/Win/Linux 通吃,SSH/VNC/RDP 一站式搞...
星哥带你玩飞牛NAS硬件02:某鱼6张左右就可拿下5盘位的飞牛圣体NAS

星哥带你玩飞牛NAS硬件02:某鱼6张左右就可拿下5盘位的飞牛圣体NAS

星哥带你玩飞牛 NAS 硬件 02:某鱼 6 张左右就可拿下 5 盘位的飞牛圣体 NAS 前言 大家好,我是星...