阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

Spark作业调度阶段分析

408次阅读
没有评论

共计 4028 个字符,预计需要花费 11 分钟才能阅读完成。

Spark 作为分布式的大数据处理框架必然或涉及到大量的作业调度,如果能够理解 Spark 中的调度对我们编写或优化 Spark 程序都是有很大帮助的;

在 Spark 中存在 转换操作(Transformation Operation)行动操作 (Action Operation) 两种;而转换操作只是会从一个 RDD 中生成另一个 RDD 且是 lazy 的,Spark 中只有 行动操作(Action Operation)才会触发作业的提交,从而引发作业调度;在一个计算任务中可能会多次调用 转换操作这些操作生成的 RDD 可能存在着依赖关系,而由于转换都是 lazy 所以当行动操作(Action Operation)触发时才会有真正的 RDD 生成,这一系列的 RDD 中就存在着依赖关系形成一个 DAG(Directed Acyclc Graph),在 Spark 中 DAGScheuler 是基于 DAG 的顶层调度模块;

相关名词

Application:使用 Spark 编写的应用程序,通常需要提交一个或多个作业;
Job:在触发 RDD Action 操作时产生的计算作业
Task: 一个分区数据集中最小处理单元也就是真正执行作业的地方
TaskSet: 由多个 Task 所组成没有 Shuffle 依赖关系的任务集
Stage: 一个任务集对应的调度阶段,每个 Job 会被拆分成诺干个 Stage

Spark 作业调度阶段分析
1.1 作业调度关系图

RDD Action 作业提交流程

这里根据 Spark 源码跟踪触发 Action 操作时触发的 Job 提交流程,Count()是 RDD 中的一个 Action 操作所以调用 Count 时会触发 Job 提交;
在 RDD 源码 count()调用 SparkContext 的 runJob,在 runJob 方法中根据 partitions(分区)大小创建 Arrays 存放返回结果;

RDD.scala

/**
* Return the number of elements in the RDD.
*/
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

SparkContext.scala

def runJob[T, U: ClassTag](rdd: RDD[T],
  func: (TaskContext, Iterator[T]) => U,
  partitions: Seq[Int],
  resultHandler: (Int, U) => Unit): Unit = {

  val callSite = getCallSite
  val cleanedFunc = clean(func)
  logInfo("Starting job:" + callSite.shortForm)
  if (conf.getBoolean("spark.logLineage", false)) {logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
  }
  dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
}

在 SparkContext 中将调用 DAGScheduler 的 runJob 方法提交作业,DAGScheduler 主要任务是计算作业与任务依赖关系,处理调用逻辑;DAGScheduler 提供了 submitJob 与 runJob 方法用于 提交作业,runJob 方法会一直等待作业完成,submitJob 则返回 JobWaiter 对象可以用于判断作业执行结果;
在 runJob 方法中将调用 submitJob,在 submitJob 中把提交操作放入到事件循环队列(DAGSchedulerEventProcessLoop)中;

def submitJob[T, U](  rdd: RDD[T],
  func: (TaskContext, Iterator[T]) => U,
  partitions: Seq[Int],
  callSite: CallSite,
  resultHandler: (Int, U) => Unit,
  properties: Properties): JobWaiter[U] = {
      ......  
      eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
      ......
  }  

在事件循环队列中将调用 eventprocessLoop 的 onReceive 方法;

Stage 拆分

提交作业时 DAGScheduler 会 从 RDD 依赖链尾部开始,遍历整个依赖链划分调度阶段;划分阶段以 ShuffleDependency 为依据,当没有 ShuffleDependency 时整个 Job 只会有一个 Stage;在事件循环队列中将会调用 DAGScheduler 的 handleJobSubmitted 方法,此方法会拆分 Stage、提交 Stage;

 private[scheduler] def handleJobSubmitted(jobId: Int,
  finalRDD: RDD[_],
  func: (TaskContext, Iterator[_]) => _,
  partitions: Array[Int],
  callSite: CallSite,
  listener: JobListener,
  properties: Properties) {var finalStage: ResultStage = null
......
  finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
......

val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
......
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)

submitWaitingStages()}

调度阶段提交

在提交 Stage 时会先 调用 getMissingParentStages 获取父阶段 Stage,迭代该阶段所依赖的父调度阶段如果存在则先提交该父阶段的 Stage 当不存在父 Stage 或父 Stage 执行完成时会对当前 Stage 进行提交;

 private def submitStage(stage: Stage) {val jobId = activeJobForStage(stage)
  if (jobId.isDefined) {if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {val missing = getMissingParentStages(stage).sortBy(_.id)
      if (missing.isEmpty) {submitMissingTasks(stage, jobId.get)
      } else {for (parent <- missing) {submitStage(parent)
        }
        waitingStages += stage
      }
    }
  }
  ......
}

参考资料:
http://spark.apache.org/docs/latest/

更多 Spark 相关教程见以下内容

CentOS 7.0 下安装并配置 Spark  http://www.linuxidc.com/Linux/2015-08/122284.htm

Spark1.0.0 部署指南 http://www.linuxidc.com/Linux/2014-07/104304.htm

CentOS 6.2(64 位)下安装 Spark0.8.0 详细记录 http://www.linuxidc.com/Linux/2014-06/102583.htm

Spark 简介及其在 Ubuntu 下的安装使用 http://www.linuxidc.com/Linux/2013-08/88606.htm

安装 Spark 集群(在 CentOS 上) http://www.linuxidc.com/Linux/2013-08/88599.htm

Hadoop vs Spark 性能对比 http://www.linuxidc.com/Linux/2013-08/88597.htm

Spark 安装与学习 http://www.linuxidc.com/Linux/2013-08/88596.htm

Spark 并行计算模型 http://www.linuxidc.com/Linux/2012-12/76490.htm

Ubuntu 14.04 LTS 安装 Spark 1.6.0(伪分布式)http://www.linuxidc.com/Linux/2016-03/129068.htm

Spark 的详细介绍:请点这里
Spark 的下载地址:请点这里

本文永久更新链接地址:http://www.linuxidc.com/Linux/2016-03/129504.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计4028字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7982256
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
我用AI做了一个1978年至2019年中国大陆企业注册的查询网站

我用AI做了一个1978年至2019年中国大陆企业注册的查询网站

我用 AI 做了一个 1978 年至 2019 年中国大陆企业注册的查询网站 最近星哥在 GitHub 上偶然...
终于收到了以女儿为原型打印的3D玩偶了

终于收到了以女儿为原型打印的3D玩偶了

终于收到了以女儿为原型打印的 3D 玩偶了 前些日子参加某网站活动,获得一次实物 3D 打印的机会,于是从众多...
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸

一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸

一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸 前言 作为天天跟架构图、拓扑图死磕的...
开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

  开源 MoneyPrinterTurbo 利用 AI 大模型,一键生成高清短视频! 在短视频内容...
240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

  240 元左右!五盘位 NAS 主机,7 代 U 硬解 4K 稳如狗,拓展性碾压同价位 在 NA...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

240 元左右!五盘位 NAS主机,7 代U硬解4K稳如狗,拓展性碾压同价位

  240 元左右!五盘位 NAS 主机,7 代 U 硬解 4K 稳如狗,拓展性碾压同价位 在 NA...
安装并使用谷歌AI编程工具Antigravity(亲测有效)

安装并使用谷歌AI编程工具Antigravity(亲测有效)

  安装并使用谷歌 AI 编程工具 Antigravity(亲测有效) 引言 Antigravity...
小白也能看懂:什么是云服务器?腾讯云 vs 阿里云对比

小白也能看懂:什么是云服务器?腾讯云 vs 阿里云对比

小白也能看懂:什么是云服务器?腾讯云 vs 阿里云对比 星哥玩云,带你从小白到上云高手。今天咱们就来聊聊——什...
你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你

你的云服务器到底有多强?宝塔跑分告诉你 为什么要用宝塔跑分? 宝塔跑分其实就是对 CPU、内存、磁盘、IO 做...
还在找免费服务器?无广告免费主机,新手也能轻松上手!

还在找免费服务器?无广告免费主机,新手也能轻松上手!

还在找免费服务器?无广告免费主机,新手也能轻松上手! 前言 对于个人开发者、建站新手或是想搭建测试站点的从业者...