阿里云-云小站(无限量代金券发放中)
【腾讯云】云服务器、云数据库、COS、CDN、短信等热卖云产品特惠抢购

ElasticSearch的基本用法与集群搭建

389次阅读
没有评论

共计 9393 个字符,预计需要花费 24 分钟才能阅读完成。

一、简介

ElasticSearch 和 Solr 都是基于 Lucene 的搜索引擎,不过 ElasticSearch 天生支持分布式,而 Solr 是 4.0 版本后的 SolrCloud 才是分布式版本,Solr 的分布式支持需要 ZooKeeper 的支持。

这里有一个详细的 ElasticSearch 和 Solr 的对比:http://solr-vs-elasticsearch.com/

二、基本用法

Elasticsearch 集群可以包含多个索引(indices),每一个索引可以包含多个类型(types),每一个类型包含多个文档(documents),然后每个文档包含多个字段(Fields),这种面向文档型的储存,也算是 NoSQL 的一种吧。

ES 比传统关系型数据库,对一些概念上的理解:
Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices  -> Types  -> Documents -> Fields

从创建一个 Client 到添加、删除、查询等基本用法:

1、创建 Client

public ElasticSearchService(String ipAddress, int port) {
        client = new TransportClient()
                .addTransportAddress(new InetSocketTransportAddress(ipAddress,
                        port));
    }

这里是一个 TransportClient。

ES 下两种客户端对比:

TransportClient:轻量级的 Client,使用 Netty 线程池,Socket 连接到 ES 集群。本身不加入到集群,只作为请求的处理。

Node Client:客户端节点本身也是 ES 节点,加入到集群,和其他 ElasticSearch 节点一样。频繁的开启和关闭这类 Node Clients 会在集群中产生“噪音”。

2、创建 / 删除 Index 和 Type 信息

 

    // 创建索引
    public void createIndex() {
        client.admin().indices().create(new CreateIndexRequest(IndexName))
                .actionGet();
    }

    // 清除所有索引
    public void deleteIndex() {
        IndicesExistsResponse indicesExistsResponse = client.admin().indices()
                .exists(new IndicesExistsRequest(new String[] {IndexName}))
                .actionGet();
        if (indicesExistsResponse.isExists()) {
            client.admin().indices().delete(new DeleteIndexRequest(IndexName))
                    .actionGet();
        }
    }
   
    // 删除 Index 下的某个 Type
    public void deleteType(){
        client.prepareDelete().setIndex(IndexName).setType(TypeName).execute().actionGet();
    }

    // 定义索引的映射类型
    public void defineIndexTypeMapping() {
        try {
            XContentBuilder mapBuilder = XContentFactory.jsonBuilder();
            mapBuilder.startObject()
            .startObject(TypeName)
                .startObject(“properties”)
                    .startObject(IDFieldName).field(“type”, “long”).field(“store”, “yes”).endObject()
                    .startObject(SeqNumFieldName).field(“type”, “long”).field(“store”, “yes”).endObject()
                    .startObject(IMSIFieldName).field(“type”, “string”).field(“index”, “not_analyzed”).field(“store”, “yes”).endObject()
                    .startObject(IMEIFieldName).field(“type”, “string”).field(“index”, “not_analyzed”).field(“store”, “yes”).endObject()
                    .startObject(DeviceIDFieldName).field(“type”, “string”).field(“index”, “not_analyzed”).field(“store”, “yes”).endObject()
                    .startObject(OwnAreaFieldName).field(“type”, “string”).field(“index”, “not_analyzed”).field(“store”, “yes”).endObject()
                    .startObject(TeleOperFieldName).field(“type”, “string”).field(“index”, “not_analyzed”).field(“store”, “yes”).endObject()
                    .startObject(TimeFieldName).field(“type”, “date”).field(“store”, “yes”).endObject()
                .endObject()
            .endObject()
            .endObject();

            PutMappingRequest putMappingRequest = Requests
                    .putMappingRequest(IndexName).type(TypeName)
                    .source(mapBuilder);
            client.admin().indices().putMapping(putMappingRequest).actionGet();
        } catch (IOException e) {
            log.error(e.toString());
        }
    }

 

这里自定义了某个 Type 的索引映射(Mapping),默认 ES 会自动处理数据类型的映射:针对整型映射为 long,浮点数为 double,字符串映射为 string,时间为 date,true 或 false 为 boolean。

注意:针对字符串,ES 默认会做“analyzed”处理,即先做分词、去掉 stop words 等处理再 index。如果你需要把一个字符串做为整体被索引到,需要把这个字段这样设置:field(“index”, “not_analyzed”)。

详情参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping-intro.html

3、索引数据

 

    // 批量索引数据
    public void indexHotSpotDataList(List<Hotspotdata> dataList) {
        if (dataList != null) {
            int size = dataList.size();
            if (size > 0) {
                BulkRequestBuilder bulkRequest = client.prepareBulk();
                for (int i = 0; i < size; ++i) {
                    Hotspotdata data = dataList.get(i);
                    String jsonSource = getIndexDataFromHotspotData(data);
                    if (jsonSource != null) {
                        bulkRequest.add(client
                                .prepareIndex(IndexName, TypeName,
                                        data.getId().toString())
                                .setRefresh(true).setSource(jsonSource));
                    }
                }

                BulkResponse bulkResponse = bulkRequest.execute().actionGet();
                if (bulkResponse.hasFailures()) {
                    Iterator<BulkItemResponse> iter = bulkResponse.iterator();
                    while (iter.hasNext()) {
                        BulkItemResponse itemResponse = iter.next();
                        if (itemResponse.isFailed()) {
                            log.error(itemResponse.getFailureMessage());
                        }
                    }
                }
            }
        }
    }

    // 索引数据
    public boolean indexHotspotData(Hotspotdata data) {
        String jsonSource = getIndexDataFromHotspotData(data);
        if (jsonSource != null) {
            IndexRequestBuilder requestBuilder = client.prepareIndex(IndexName,
                    TypeName).setRefresh(true);
            requestBuilder.setSource(jsonSource)
                    .execute().actionGet();
            return true;
        }

        return false;
    }

    // 得到索引字符串
    public String getIndexDataFromHotspotData(Hotspotdata data) {
        String jsonString = null;
        if (data != null) {
            try {
                XContentBuilder jsonBuilder = XContentFactory.jsonBuilder();
                jsonBuilder.startObject().field(IDFieldName, data.getId())
                        .field(SeqNumFieldName, data.getSeqNum())
                        .field(IMSIFieldName, data.getImsi())
                        .field(IMEIFieldName, data.getImei())
                        .field(DeviceIDFieldName, data.getDeviceID())
                        .field(OwnAreaFieldName, data.getOwnArea())
                        .field(TeleOperFieldName, data.getTeleOper())
                        .field(TimeFieldName, data.getCollectTime())
                        .endObject();
                jsonString = jsonBuilder.string();
            } catch (IOException e) {
                log.equals(e);
            }
        }

        return jsonString;
    }

 

ES 支持批量和单个数据索引。

4、查询获取数据

 

    // 获取少量数据 100 个
    private List<Integer> getSearchData(QueryBuilder queryBuilder) {
        List<Integer> ids = new ArrayList<>();
        SearchResponse searchResponse = client.prepareSearch(IndexName)
                .setTypes(TypeName).setQuery(queryBuilder).setSize(100)
                .execute().actionGet();
        SearchHits searchHits = searchResponse.getHits();
        for (SearchHit searchHit : searchHits) {
            Integer id = (Integer) searchHit.getSource().get(“id”);
            ids.add(id);
        }
        return ids;
    }

    // 获取大量数据
    private List<Integer> getSearchDataByScrolls(QueryBuilder queryBuilder) {
        List<Integer> ids = new ArrayList<>();
        // 一次获取 100000 数据
        SearchResponse scrollResp = client.prepareSearch(IndexName)
                .setSearchType(SearchType.SCAN).setScroll(new TimeValue(60000))
                .setQuery(queryBuilder).setSize(100000).execute().actionGet();
        while (true) {
            for (SearchHit searchHit : scrollResp.getHits().getHits()) {
                Integer id = (Integer) searchHit.getSource().get(IDFieldName);
                ids.add(id);
            }
            scrollResp = client.prepareSearchScroll(scrollResp.getScrollId())
                    .setScroll(new TimeValue(600000)).execute().actionGet();
            if (scrollResp.getHits().getHits().length == 0) {
                break;
            }
        }

        return ids;
    }

 

这里的 QueryBuilder 是一个查询条件,ES 支持分页查询获取数据,也可以一次性获取大量数据,需要使用 Scroll Search。

5、聚合(Aggregation Facet)查询

 

    // 得到某段时间内设备列表上每个设备的数据分布情况 < 设备 ID,数量 >
    public Map<String, String> getDeviceDistributedInfo(String startTime,
            String endTime, List<String> deviceList) {

        Map<String, String> resultsMap = new HashMap<>();

        QueryBuilder deviceQueryBuilder = getDeviceQueryBuilder(deviceList);
        QueryBuilder rangeBuilder = getDateRangeQueryBuilder(startTime, endTime);
        QueryBuilder queryBuilder = QueryBuilders.boolQuery()
                .must(deviceQueryBuilder).must(rangeBuilder);

        TermsBuilder termsBuilder = AggregationBuilders.terms(“DeviceIDAgg”).size(Integer.MAX_VALUE)
                .field(DeviceIDFieldName);
        SearchResponse searchResponse = client.prepareSearch(IndexName)
                .setQuery(queryBuilder).addAggregation(termsBuilder)
                .execute().actionGet();
        Terms terms = searchResponse.getAggregations().get(“DeviceIDAgg”);
        if (terms != null) {
            for (Terms.Bucket entry : terms.getBuckets()) {
                resultsMap.put(entry.getKey(),
                        String.valueOf(entry.getDocCount()));
            }
        }
        return resultsMap;
    }

 

Aggregation 查询可以查询类似统计分析这样的功能:如某个月的数据分布情况,某类数据的最大、最小、总和、平均值等。

详情参考:https://www.elastic.co/guide/en/elasticsearch/client/Java-api/current/java-aggs.html

三、集群配置

配置文件 elasticsearch.yml

集群名和节点名:

#cluster.name: elasticsearch

#node.name: “Franz Kafka”

是否参与 master 选举和是否存储数据

#node.master: true

#node.data: true

分片数和副本数

#index.number_of_shards: 5
#index.number_of_replicas: 1

master 选举最少的节点数,这个一定要设置为整个集群节点个数的一半加 1,即 N /2+1

#discovery.zen.minimum_master_nodes: 1

discovery ping 的超时时间,拥塞网络,网络状态不佳的情况下设置高一点

#discovery.zen.ping.timeout: 3s

注意,分布式系统整个集群节点个数 N 要为奇数个!!

四、Elasticsearch 插件

1、elasticsearch-head 是一个 elasticsearch 的集群管理工具:./elasticsearch-1.7.1/bin/plugin -install mobz/elasticsearch-head

2、elasticsearch-sql:使用 SQL 语法查询 elasticsearch:./bin/plugin -u https://github.com/NLPchina/elasticsearch-sql/releases/download/1.3.5/elasticsearch-sql-1.3.5.zip –install sql

github 地址:https://github.com/NLPchina/elasticsearch-sql

3、elasticsearch-bigdesk 是 elasticsearch 的一个集群监控工具,可以通过它来查看 ES 集群的各种状态。

安装:./bin/plugin -install lukas-vlcek/bigdesk

访问:http://192.103.101.203:9200/_plugin/bigdesk/,

4、elasticsearch-servicewrapper 插件是 ElasticSearch 的服务化插件,

在 https://github.com/elasticsearch/elasticsearch-servicewrapper 下载该插件后,解压缩,将 service 目录拷贝到 elasticsearch 目录的 bin 目录下。

而后,可以通过执行以下语句安装、启动、停止 ElasticSearch:

sh elasticsearch install

sh elasticsearch start

sh elasticsearch stop

Linux 上安装部署 ElasticSearch 全程记录  http://www.linuxidc.com/Linux/2015-09/123241.htm

Elasticsearch 安装使用教程 http://www.linuxidc.com/Linux/2015-02/113615.htm

ElasticSearch 配置文件译文解析 http://www.linuxidc.com/Linux/2015-02/114244.htm

ElasticSearch 集群搭建实例  http://www.linuxidc.com/Linux/2015-02/114243.htm

分布式搜索 ElasticSearch 单机与服务器环境搭建  http://www.linuxidc.com/Linux/2012-05/60787.htm

ElasticSearch 的工作机制  http://www.linuxidc.com/Linux/2014-11/109922.htm 

ElasticSearch 的详细介绍 :请点这里
ElasticSearch 的下载地址 :请点这里

本文永久更新链接地址 :http://www.linuxidc.com/Linux/2015-10/124046.htm

正文完
星哥玩云-微信公众号
post-qrcode
 0
星锅
版权声明:本站原创文章,由 星锅 于2022-01-21发表,共计9393字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
【腾讯云】推广者专属福利,新客户无门槛领取总价值高达2860元代金券,每种代金券限量500张,先到先得。
阿里云-最新活动爆款每日限量供应
评论(没有评论)
验证码
【腾讯云】云服务器、云数据库、COS、CDN、短信等云产品特惠热卖中

星哥玩云

星哥玩云
星哥玩云
分享互联网知识
用户数
4
文章数
19351
评论数
4
阅读量
7989011
文章搜索
热门文章
星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛NAS-6:抖音视频同步工具,视频下载自动下载保存

星哥带你玩飞牛 NAS-6:抖音视频同步工具,视频下载自动下载保存 前言 各位玩 NAS 的朋友好,我是星哥!...
星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛NAS-3:安装飞牛NAS后的很有必要的操作

星哥带你玩飞牛 NAS-3:安装飞牛 NAS 后的很有必要的操作 前言 如果你已经有了飞牛 NAS 系统,之前...
我把用了20年的360安全卫士卸载了

我把用了20年的360安全卫士卸载了

我把用了 20 年的 360 安全卫士卸载了 是的,正如标题你看到的。 原因 偷摸安装自家的软件 莫名其妙安装...
再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见zabbix!轻量级自建服务器监控神器在Linux 的完整部署指南

再见 zabbix!轻量级自建服务器监控神器在 Linux 的完整部署指南 在日常运维中,服务器监控是绕不开的...
飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛NAS中安装Navidrome音乐文件中文标签乱码问题解决、安装FntermX终端

飞牛 NAS 中安装 Navidrome 音乐文件中文标签乱码问题解决、安装 FntermX 终端 问题背景 ...
阿里云CDN
阿里云CDN-提高用户访问的响应速度和成功率
随机文章
手把手教你,购买云服务器并且安装宝塔面板

手把手教你,购买云服务器并且安装宝塔面板

手把手教你,购买云服务器并且安装宝塔面板 前言 大家好,我是星哥。星哥发现很多新手刚接触服务器时,都会被“选购...
星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定!

星哥带你玩飞牛 NAS-9:全能网盘搜索工具 13 种云盘一键搞定! 前言 作为 NAS 玩家,你是否总被这些...
星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛NAS-14:解锁公网自由!Lucky功能工具安装使用保姆级教程

星哥带你玩飞牛 NAS-14:解锁公网自由!Lucky 功能工具安装使用保姆级教程 作为 NAS 玩家,咱们最...
浏览器自动化工具!开源 AI 浏览器助手让你效率翻倍

浏览器自动化工具!开源 AI 浏览器助手让你效率翻倍

浏览器自动化工具!开源 AI 浏览器助手让你效率翻倍 前言 在 AI 自动化快速发展的当下,浏览器早已不再只是...
飞牛NAS玩转Frpc并且配置,随时随地直连你的私有云

飞牛NAS玩转Frpc并且配置,随时随地直连你的私有云

飞牛 NAS 玩转 Frpc 并且配置,随时随地直连你的私有云 大家好,我是星哥,最近在玩飞牛 NAS。 在数...

免费图片视频管理工具让灵感库告别混乱

一言一句话
-「
手气不错
每天一个好玩的网站-手机博物馆-CHAZ 3D Experience

每天一个好玩的网站-手机博物馆-CHAZ 3D Experience

每天一个好玩的网站 - 手机博物馆 -CHAZ 3D Experience 一句话介绍:一个用 3D 方式重温...
开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

开源MoneyPrinterTurbo 利用AI大模型,一键生成高清短视频!

  开源 MoneyPrinterTurbo 利用 AI 大模型,一键生成高清短视频! 在短视频内容...
如何安装2026年最强个人助理ClawdBot、完整安装教程

如何安装2026年最强个人助理ClawdBot、完整安装教程

如何安装 2026 年最强个人助理 ClawdBot、完整安装教程 一、前言 学不完,根本学不完!近期,一款名...
星哥带你玩飞牛NAS硬件03:五盘位+N5105+双网口的成品NAS值得入手吗

星哥带你玩飞牛NAS硬件03:五盘位+N5105+双网口的成品NAS值得入手吗

星哥带你玩飞牛 NAS 硬件 03:五盘位 +N5105+ 双网口的成品 NAS 值得入手吗 前言 大家好,我...
开发者福利:免费 .frii.site 子域名,一分钟申请即用

开发者福利:免费 .frii.site 子域名,一分钟申请即用

  开发者福利:免费 .frii.site 子域名,一分钟申请即用 前言 在学习 Web 开发、部署...